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Abstract
 

A computational procedure for identifying the state-space matrices corresponding 
to discrete bilinear representations of nonlinear systems is presented.  A key feature of 
the method is the use of first- and second-order Volterra kernels (first- and second-order 
pulse responses) to characterize the system.  The present method is based on an extension 
of a continuous-time bilinear system identification procedure given in a 1971 paper by 
Bruni, di Pillo, and Koch.  The analytical and computational considerations that underlie 
the original procedure and its extension to the title problem are presented and described, 
pertinent numerical considerations associated with the process are discussed, and results 
obtained from the application of the method to a variety of nonlinear problems from the 
literature are presented.  The results of these exploratory numerical studies are decidedly 
promising and provide sufficient credibility for further examination of the applicability of 
the method.         

 
 

Nomenclature 
 

Ad, Bd, Cd, Dd , Ndj state-space matrices of discrete bilinear system (j = 1, 2, …, r) 
 
Ac, Bc, Cc, Dc, Ncj state-space matrices of continuous bilinear system (j = 1, 2, …, r) 
 
G, H, Kj   subsidiary matrices appearing in Bruni, di Pillo, and Koch paper  
                                      (j = 1, 2, …, r) 
 

1( , , )ih iτ τ   ith order continuous kernel 
 
k, s     discrete time variables/indices 
 

( )
1 ( )pk k    first-order discrete Volterra kernels (p = 1, 2, …, r) 

  

1 2
( , )
2 ,( )p q kk k   second-order discrete Volterra kernels (p, q = 1, 2, …, r) 

 

1Κ              matrix of first-order discrete Volterra kernels 
 

( )
2

jΚ     matrices of second-order discrete Volterra kernels (j = 1,2,…,r) 
 
m    number of outputs/responses 
 
MIMO   Multi-Input/Multi-Output 
 
MISO   Multi-Input/Single Output 
 
n                                  number of state variables          

 1 
 



 

 
ncomp    number of components computed for each second-order kernel               
 
N    number of time points in time history of discretized problem                   
 
r    number of inputs 
 
SID    System IDentification 
 
SISO    Single Input/Single Output 
 
t, τ    continuous time variables 
 
dt    continuous time increment 
 
Δt    discrete time increment 
 
T    time lag between double pulse inputs used for computing components of 
    second-order kernels (T = i ΔT and i dT; i = 0, 1, 2, 3,…, ncomp-1) 
 
dT    continuous time increment (dT = j dt; j an integer ≥ 1) for varying time  
    lag T 
 
ΔT    discrete time increment (ΔT = j ∆t; j an integer ≥ 1) for varying time  
    lag T 
 
u    input vector 
 
ui    ith component of input vector u 
 

( )
1

pw (τ1)                       first-order continuous kernels of Bruni et al. (p = 1, 2, …, r) 
 

1 2
( , )
2 ( , )p qw τ τ                 second-order continuous  kernels of Bruni et al. (p, q = 1, 2, …, r) 

 

11 ( )W τ                        matrix of first-order continuous kernels of Bruni et al. 
 

1 2
( )

2 ( , )jW τ τ                   matrices of second-order continuous kernels of Bruni et al. (j = 1,2,...,r) 
 
 X                                state vector 
 
 y    output vector 
 
y1, y2, y12   subsidiary pulse responses used to calculate kernels  
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1( )tδ−                          continuous-time unit step function 
 

0δ     discrete-time unit pulse 
 
( )c     continuous-time quantity 
 
( )d     discrete-time quantity 
 
( )cid     identified continuous quantity 
 
( )did     discretized version of identified continuous quantity 
 

1( )−     matrix inverse 
 
( )T     matrix or vector transpose 
 
 

Introduction 
 
A research program with the objective of developing computationally-efficient, state- 

space-based techniques for the use of reduced-order computational fluid dynamics (CFD) 
aerodynamic models in nonlinear aeroservoelastic (NL-ASE) analysis of aerospace vehicles was 
initiated in the Aeroelasticity Branch at NASA Langley Research Center in 2000.  The scope of 
the program is depicted in figure 1 and includes three major task areas: (1) reduced-order 
modeling of the aerodynamics acting on the system; (2) identification of an approximate bilinear 
state-space model of the nonlinear aerodynamics; and (3) aeroelastic or aeroservoelastic analysis 
of the coupled system.  A key feature of the method is the use of aerodynamic Volterra kernels 
(aerodynamic pulse responses) to provide the basis for a reduced-order model (ROM) of the 
aerodynamics acting on the system (figure 1, box 1).  The kernels are assumed to be identified 
using the output of a CFD aerodynamics model.  Initial attention in implementing the 
computations associated with the tasks in boxes 1 and 2 was directed at the identification of 
linearized state-space CFD aerodynamic models for coupling to linear state-space structural 
dynamics models of aerospace vehicles and subsequent aeroelastic analysis of the coupled 
system.  Both single input/single output (SISO) and multi-input/multi-output (MIMO) systems 
were addressed in these studies.  However, in all cases involving multiple inputs the kernels were 
calculated assuming that there was no nonlinear coupling between inputs and outputs.  In spite of 
this simplification, studies to-date indicate that state-space aerodynamic models identified using 
this assumption can sometimes provide acceptable results, particularly for systems that are not 
highly nonlinear.  The results of some initial exploratory numerical investigations conducted 
using this approach are reported in references 1-3.  Some later and more substantive applications 
in both computational and experimental aeroelasticity are reported in references 4-7.   

 
To better account for nonlinear aeroelastic phenomena in analytical predictions, there is 

clearly a need to extend the subject methodology to include more of the nonlinear aerodynamics 
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than is possible by simply using the expedient of linearizing the underlying nonlinear CFD 
equations about a nonlinear steady-state solution.  Such linearized models are oftentimes 
inadequate, in which case there is a need for an improved approximation having a wider range of 
applicability in representing the behavior of the nonlinear system.  This long-term need was 
recognized at the time the research program was being defined and led to the decision to include 
an improved treatment of aerodynamic nonlinearity by using a bilinear state-space representation 
to approximate the nonlinear aerodynamics (see box 2 of figure 1).  Bilinear equations describe a 
form of nonlinearity in which the system is separately linear in state and input but not jointly, 
i.e., the nonlinearity appears as a product of state and input.  In spite of their special form, 
bilinear equations have a demonstrated capability to model nonlinear behavior in a rather large 
variety of engineering and non-engineering disciplines (see, for example, refs. 8-12).  It was their 
established range of applicability and their relative simplicity that prompted the selection of 
bilinear equations to represent the aerodynamic nonlinearities in the present work.  Because of 
the key role to be played by this bilinear representation, it was clear that the extent to which 
bilinear state-space models can be used to represent nonlinear systems had to be demonstrated.  
For this reason, it was decided that all relevant computations associated with any proposed new 
procedure would be demonstrated using simple nonlinear systems before being applied to 
problems involving any real CFD calculations.  

 
The bilinear system identification portion of the planned research program (fig. 1, box 2) 

began in 2002 with the decision to first note what types of relevant formulations were available 
in the literature and then to identify those that could be either adopted as-is or easily modified to 
meet the requirements of the present investigation.  The primary requirement of any candidate 
approach was that it be Volterra-kernel based for compatibility with the procedures already 
established and implemented in the research program.  Contending procedures also needed to 
have adequate verification by an attendant example.  Also, because CFD models are discrete, a 
discrete-time formulation was required.  

 
 The authors conducted a survey of the literature dealing with the identification of state-

space matrices for bilinear systems that met the selection criteria noted above.  Many papers 
were examined and evaluated (see, for example, refs. 13-19).  With one exception, no suitable 
procedures were found.  Most were either SISO formulations and not easily extendable to the 
multi-input case, or theoretical expositions of MIMO formulations that did not lend themselves 
to practical implementation.  Also, none of the excluded methods were Volterra-kernel based as 
required by the selection criteria.  These papers also lacked examples that demonstrated the key 
computational steps in their procedures.  The most promising approach found was in a 1971 
paper by Bruni, di Pillo, and Koch (ref. 13).  Those authors studied the relationship between the 
output of a bilinear system expressed in state-space form and the output of a nonlinear system 
expressed as an infinite series of Volterra kernel-based convolution integrals of increasing order.  
They defined a clear and direct procedure for identifying the state-space matrices of continuous 
bilinear systems using a subset of kernels through second order appearing in the series 
expansion.  They also provided a suitable example illustrating their procedure for a multi-
input/single-output (MISO) case.  Although their method defined a continuous-time bilinear 
system identification process using continuous kernels, the procedure was deemed to have the 
potential for extension to the discrete case.  For these reasons, the decision was made to go 
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forward with an evaluation of the procedure of reference 13 in expectation of its eventual 
extension to the discrete case1. 

 
 The purpose of this report is twofold: (1) To summarize the analytical, computational, and 
numerical considerations that underlie both the original continuous-time bilinear realization 
procedure of Bruni, di Pillo, and Koch (ref. 13) and its extension to the discrete case of interest 
herein; and (2) To present results from a suite of numerical calculations that were made to 
evaluate the new procedure.  The presentation begins with a brief overview of bilinear equations.  
This is followed by a discussion of Volterra series, the kernels that underlie those series, and the 
role of these kernels in convolution-based solutions of system response to arbitrary inputs.  The 
continuous-time bilinear system identification procedure of Bruni, di Pillo, and Koch (ref. 13) is 
summarized in the next section.  The strategy used for developing and verifying an extension of 
their method to discrete problems is then outlined.  This is followed by a discussion of how the 
key computational steps of their method were analytically and numerically confirmed by the 
present authors, culminating with a reproduction of the numerical results presented in their 
paper.  The pulse loading patterns that are imposed to calculate the discrete Volterra kernels 
needed in a discrete formulation are then described.  Based on the insight gained from 
performing the aforementioned tasks, a candidate computational procedure emerged for 
addressing the subject problem of identifying bilinear state-space representations of discrete 
nonlinear systems, which is described in the next section.  There then follows a brief discussion 
of the manner in which the continuous equations employed in the illustrative examples were 
discretized for numerical solution.  Illustrative results are then presented, first from applications 
of the new procedure to several nonlinear and bilinear SISO problems from the literature, and 
then from applications using a modified version of the MISO equations of reference 13.  
Emphasis in this section is on showing the accuracy of the response time histories computed 
using the discrete bilinear models obtained using the method introduced in this report.  This 
section also includes some time histories computed using the first- and second-order kernels 
directly in a convolution-based solution of the original nonlinear equations.  Pertinent numerical 
issues associated with both the original and extended methods are addressed where appropriate 
throughout the report.  The report concludes with the discussion of a block diagram summarizing 
the sequence of tasks associated with the new computational procedure.  The discussion of 
several relevant aspects of the present development is relegated to the appendices.  These 
include: (1) Formulas for computing first- and second-order Volterra kernels directly if the 
continuous bilinear state-space matrices are known (Appendix A); (2) A schematic depiction of 
pulse loading patterns for calculating first- and second-order kernels for discrete systems with 
two inputs (Appendix B); and (3) A collection of algebraic-like rules for imposing the pulse 
loading patterns employed for computing the subsidiary responses for calculating the kernels for 
the general MIMO case (Appendix C).    
 

Bilinear Equations 
 
As mentioned earlier, bilinear equations are a class of nonlinear equations that have been 

used successfully in the mathematical modeling of nonlinear phenomena and processes in a wide 
                                                 
1While this task was underway, a procedure for continuous-time bilinear system identification based on using a set 
of responses to a series of varying-length step inputs appeared in the literature (ref. 20).  This method may offer a 
practical, non-kernel-based computational approach that could serve as an alternative to the method of reference 13. 
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variety of disciplines.  Bilinear equations are ordinary differential equations that are separately 
linear in state and input but not jointly.  That is, the nonlinearity involves a product of state and 
input.  Thus, the time-invariant state-space equations for a continuous bilinear system may be 
written as 

 

                           
1 ( ) ( 1) ( ) ( 1) (1 1) ( )( 1)

1
( ) ( ) ( ) ( ) ( )c c c c c c c c

n n n n n n n n r r

r

j j
j

t t t t tX A X N X u B u

× × × × × × × ×
=

= + +∑

(1) 
 

                                           
1 ( )( 1) ( )( 1)

( ) ( ) ( )
c c c c

m m n n m r r

t ty C X D u
× × × × ×

= + c
t

d u

 
where Xc is the n ×1 state vector, ucj is the jth component of the r ×1 input vector uc, yc is the m×1 
output vector, and Ac, Bc, Cc, Dc, Ncj are real constant matrices of appropriate dimensions.  The 
corresponding discrete-time equations may be written as 

 

1
( ) ( )( )( 1) ( )d d

r

j j
j

k kk kX A X k N X u B
=

+ = + +∑  

(2) 
 

( )( ) ( )d dky k C X D u k= +  
 
where the interpretation and sizes of the matrices Ad, Bd, Cd, Dd, and Nd j  and the vectors X, u, and 
y are the same as the corresponding quantities in equations 1.  In the discrete form, time has been 
discretized such that t = k ∆t, where k is a discrete time index and ∆t is a discrete time increment 
omitted from the equation to simplify notation.    
 
 Bilinear systems represent a rather simple class of nonlinear systems.   In spite of their 
simplicity, however, bilinear mathematical models have been (and continue to be) used to 
describe a wide variety of nonlinear phenomena and processes in such fields as engineering, 
physics, chemistry, biology, medicine, ecology, agriculture, and economics (see, for example, 
refs. 8-12).  The control of distillation processes in the chemical industry, for instance, depends 
to a large extent on the bilinear equations resulting from approximations made to the nonlinear 
equations governing those processes.  Bilinear equations can arise naturally during the course of 
deriving governing equations of motion for a system or process that is inherently bilinear, as a 
consequence of an a priori approximation made to a nonlinear system, or as a result of applying 
some type of formal “linearization” technique such as Carleman linearization (ref. 21) to a 
nonlinear system of equations.  The reader is referred to references 8-12, 15, and 22-23 for 
discussions dealing with the mathematical aspects of bilinear systems and the nuances of their 
behavior.   
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 Because of the ubiquitous nature of bilinear equations, a rather sizable literature has arisen 
that deals with the realization (i.e., identification) of the state-space matrices appearing in 
equations 1 and 2.  However, while techniques for identifying the state-space matrices ABCD for 
both discrete and continuous linear systems are well established and a number of reputable and 
proven methods are available, the same level of maturity has not yet emerged for bilinear 
systems.  In an attempt to address this need as it applies to the reduced-order modeling of 
unsteady aerodynamics in CFD-based aeroelastic analyses, this report presents and evaluates a 
computational procedure for identifying the state-space matrices for bilinear representations of 
nonlinear discrete-time systems.  Because of the key role played by Volterra kernels in the 
subject development, some introductory remarks dealing with such kernels are given in the next 
section. 
 
 

Volterra Series, Volterra Kernels, and Convolutions 
 
 The response of a causal, time-invariant, finite-memory, nonlinear system to an arbitrary 
input may be expressed as an infinite sum of multidimensional convolution integrals of 
increasing order.  Representation of nonlinear systems in this manner is treated extensively in the 
literature (see, for example, references 24-28).  For continuous-time MIMO systems, such series 
can be written as      
 

                  
1 1 1 2 1 2 1 2 1 2

0 0 0

1 1 1
3 0 0

( ) ( ) ( ) ( , ) ( ) ( )

( , , ) ( ) ( )

t t t

o

t t

i i i i
i

y t y h u t d h u t u t d d

h u t u t d d

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ
∞

=

= + − + − −

+ − −

∫ ∫ ∫

∑∫ ∫
              (3) 

 
where y(t) is an m × 1 response vector, u(t) is an r × 1 input vector, 1 1( )h τ  is a first-order 
kernel, 2 1 2( , )h τ τ  is a second-order kernel, etc.  Any nonzero steady-state contribution to the total 
response is represented by the m × 1 constant vector yo.  The value of yo is known based on the 
steady-state value of the system at a particular condition.  Representations of the responses of 
nonlinear systems having the form given in equation 3 are called Volterra series and the kernels 
appearing in them are called Volterra kernels.  The forms of the higher-order kernels appearing 
in such series are not unique2 and different forms appear in the literature depending on the 
domain of integration chosen for their definition.  Both symmetric and non-symmetric (e.g., 
triangular) kernels are common in the literature.  However, because non-symmetric kernels can 
be easily converted to symmetrical kernels without affecting the input/output relation, there is no 
loss of generality in assuming symmetric kernels in a formulation (refs. 24-25).  The form of the 
Volterra series given in equation 3 assumes that the higher-order kernels are symmetric.  
 
  The Volterra series representation of nonlinear systems as given in equation 3 may be 
viewed as an extension of the method of linear convolution to nonlinear systems.  The first  

                                                 
2 Volterra kernels are, however, invariant characteristics of a nonlinear system in the same sense that system Markov 
parameters uniquely characterize a linear system. 
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integral appearing in equation 3 is the linear convolution integral that gives the linear 
contribution to the total response.  The second integral in the series may be regarded as a second-
order convolution integral that provides the second-order contribution to the total response.  
Similar interpretations may be made for the successively higher-order integrals in the series.  The 
first-order kernel 1 1( )h τ  characterizes the linear behavior of the system and is identical to the 
unit impulse response of the linear (or linearized) system.  The second-order kernel 2 1 2( , )h τ τ  
characterizes the behavior of the nonlinear system to two separate unit impulses applied at two 
varying points in time.  Thus, the kernel 2 1 2( , )h τ τ  is a two-dimensional function.  It is a function 
of time 1τ  and a function of time lag T 2 1τ τ= − so that for every T that is used, a new function of 
time 1τ is defined.  These functions of time are referred to as components of the second-order 
kernel.  Analogous interpretations may be made for the higher-order kernels.  Consequently, the 
kernels appearing in the sequence of higher-order convolution integrals account in an increasing 
manner for the nonlinearity in the system.  The higher-order kernels are also a function of the 
amplitude of the impulse used for identification (ref. 3).  
 
 Volterra theory, as exemplified by equation 3, states that any time-invariant nonlinear 
system with finite memory can be modeled as an infinite sum of multi-dimensional convolution 
integrals.  The assumption of time invariance means that the equations describing the system are 
not explicit functions of time.  The assumption of finite or fading memory implies that the 
kernels are decaying functions of time and decay to zero in a finite amount of time.  Equation 3 
indicates that an infinite number of convolution terms, and thus kernels, are formally required for 
such representations.  This suggests that Volterra series models may be impractical for highly 
nonlinear problems, with convergence being either slow or nonexistent.  However, any nonlinear 
system that exhibits fading memory, in the sense that past inputs have a diminishing influence on 
present outputs, can be approximated to arbitrary accuracy by a truncated Volterra series (ref. 
24).  Fortunately, many nonlinear systems encountered in engineering satisfy this requirement 
(i.e., are of the fading-memory type) and may be approximated by series that include only a few 
of the lower-order integrals, oftentimes, only the first two or three.  However, irrespective of the 
number of terms retained, the radius of convergence of a Volterra series is limited, analogous to 
the radius of convergence of the Taylor series expansion of a function.  Also, the truncation error 
associated with using a finite Volterra series approximation grows with input amplitude.  Thus, 
Volterra series representations of nonlinear systems converge on bounded time intervals and for 
bounded inputs (refs. 24-25).  The actual limits in any given case depend primarily on the type of 
nonlinearity, the strength of the nonlinearity, and the magnitude and type of input.  In spite of 
these restrictions, Volterra series have been and continue to be used successfully to model 
nonlinear processes and phenomena in a variety of fields, as pointed out earlier.  It is only rather 
recently, however, that discrete Volterra kernels have been promoted and established as a 
practical computational tool for reduced-order modeling of unsteady aerodynamics in CFD-
based aeroelastic analyses (refs. 1-3).   
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 The discrete-time version of the Volterra series given in equation 3 may be written as 
 

                                         (4) 1 1 2

1

1 1 1 2 1 2 1 2
1 1 1

1 1
3 1 1

( ) ( ) ( ) ( , ) ( , )

( , , ) ( ) ( )
i

o
s s s

N N

i i i
i s s

N N N
y k y h s u k s h s s u k s k s

h s s u k s u k s ds ds

= = =

∞

= = =

= + − + − −

+ −

∑ ∑∑

∑∑ ∑ 1 i−

c

 
where N is the number of points in the discretized time history, and the interpretation of the other 
quantities follows from a comparison with the comparable quantities in equation 3 for the 
continuous case.  The reader is referred to references 3, 12, 22, 24-25, and 27 for discussions 
dealing with the theoretical aspects of Volterra series representation of nonlinear systems and the 
calculation of relevant kernels. 
 
 Bruni, di Pillo, and Koch (ref. 13) studied the relationship between the models represented 
by equations 1 and 3 and developed the continuous-time bilinear system identification (SID) 
procedure that was selected as the basis for devising a procedure addressing the broader problem 
of identifying bilinear state-space representations of discrete-time nonlinear systems which is of 
interest here.  Their procedure is summarized in the next section. 
 
 

Procedure of Bruni, di Pillo, and Koch for Identification  
of Continuous Bilinear Systems 

 
 The procedure introduced by Bruni, di Pillo, and Koch (ref. 13) for the identification of the 
state-space matrices of a continuous bilinear system using Volterra kernels is summarized in this 
section.  Only the major steps in their procedure are presented here, with minimum discussion.  
The reader is referred to their paper for a thorough discussion of the relevant theoretical aspects 
underlying the development, including theorems and assumptions.  
 
 Reference 13 starts with the time-invariant state-space equations of a continuous bilinear 
system in the form 
 

                                                                                                  (5) 1

r

c c c c j c j
j

c c c

X A X B u u N X

y C X D u
=

= + +

= +

∑

 
where uj is the j-th component of the r ×1 input vector u, Xc is the n ×1 vector of state variables, y 
is the m ×1 vector of outputs, and Ac, Bc, Cc, Dc, and Ncj are matrices of suitable dimensions.  The 
output of a nonlinear, time-invariant system may be related to its input by a functional series of 
kernels (assumed to be known) which, for MIMO systems, may be written as 
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1 2

1 2

1 2

( , , , )
1 2

1 1 1 10 0 0

1 2 1 2

( ) ( , , , )

( ) ( ) ( ) , , ,

i

i

i

t t t r r r
j j j

i i
i j j j

i

j j j i

y t w

u t u t u t d d d

τ τ τ

iτ τ τ τ τ

∞

= = = =

τ

•=

− − −

∑ ∑∑ ∑∫∫ ∫ … …

…
                               (6) 

The kernels wi appearing in equation 6 are triangular kernels so that τi  ≥ τi-1  ≥ …  ≥ τ2 ≥ τ1 ≥ 0. 
 
 As mentioned earlier, systems can often be treated as finite-memory systems, in which 
case the first summation appearing in equation 6 may be approximated by a finite summation.  
The index i denotes the order of the kernels and r denotes the number of inputs.  The expansion 
of equation 6 is characterized for every order i by ri kernels 1 2, , ,

1 2( , , , )ij j j
i iw τ τ τ… … .  For example, 

for the case of 2 inputs (r = 2), there are 21 = 2 first-order kernels and 22 = 4 second-order 
kernels. While investigating the relationship between the models given by equations 5 and 6, 
Bruni, di Pillo, and Koch were led to a procedure for identifying the bilinear state-space matrices 
in equation 5 using the first- and second-order kernels from equation 6.  An ancillary result that 
emerged from their studies was a general equation for computing the kernels which appear in 
equation 6 given the state-space matrices which define the bilinear model of equation 5.  The 
principal steps in their identification procedure are described briefly below. 
 
 The first major step of their procedure is to compute the first-order kernels of the 
linearized system 

( )
1

jw

 

                                                                                                                         (7) c c c c

c c c

X A X B
y C X D u

= +

= +

u

1

 
obtained from equation 5 by setting Ncj = 0.  This is a straightforward calculation as these kernels 
are identical to the impulse responses of a linear system and can be computed in the same way.  
The collection of r first-order kernels  can be assembled into an m × r matrix    ( )

1
jw

 

                                      1 1 1
(1) (2) ( )

1 1 1 1
1 1 1

( ) ( ) ( ) ( )r

m r m m m

W w w wτ τ τ
× × × ×

⎡ ⎤
⎣ ⎦= τ

                                       (8) 

which is the impulse response matrix of the linearized system.  The use of any realization 
procedure suitable for time-invariant linear systems applied to the matrix 1 1( )W τ  will yield the 
state-space matrices Ac, Bc, Cc, and Dc.   
 
 The next major step in their procedure is the determination of the matrices Ncj.  To this 
end, the paper first defines the n × n matrices 
 

2

1

[ ]c c
c c

t
A AT

t
G C e C e dτ τ τ= ∫                                                                                                     (9a) 
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2

[ ]c c
c c

t
A A T

1t
H e B e B dτ τ τ= ∫                                                  (9b) 

 
ted using the matrices Ac, Bc,

nonsingular for a controllable and observable system.  The setting of the time limits of 
tegration [t1, t2] is discussed in a later section.   

      (10) 

Note that although each of the second-order kernels is ostensibly m × 1 in size, they are actually 
h composed of a series of m × 1 components whose number is determined by the 

time lags T used to evaluate the kernels, as discussed earlier.  Thus, each kernel must actually be 

The matrices G and H are compu  and Cc obtained above and will be 

in
 
 The ‘m × 1’ second-order kernels 1 2,( )

2
j jw  are collected into the r  ‘m × r’ matrices 

 

     1 2 2 1 2 2 2 1 22
1 1 1

( , ) ( , )
m r m m m

w w w j rW τ τ τ τ
× × × ×

⎣ ⎦ ==
   

( ,1) ( ,2) ( , )
1 2( , ) ( , ) , 1, 2, ...,j j j rj τ τ τ τ⎡ ⎤

eac number of 

regarded as an m × ncomp matrix for computational purposes, where ncomp is the number of 
components (and thus time lags T) used to define the kernel.  These second-order kernels and the 
matrices Ac, Bc, Cc determined above are then used to compute the n × n matrices jK defined by 

           
2 2 1

1 2 1

1 1 1

( )
2 1 2 2 1[ ] ( , ) [ ] , 1,2, ...c

c c

t t
A AT j T

j
t t

K C e W e B d d j r
τ

τ τ τ

τ

τ τ τ τ
+

−

+

= =∫ ∫             (11) 

 
ired n × n matrices c jNThe des are then given by 

 
                                    2, , 1 1 , 1,c j  jN G K H j r− −= = …                                       (12) 

This completes the identification of the state-space matrices Ac, Bc, Cc, Dc, and Ncj defining 
stem given in equation 5.                        

 to Discrete Systems 
 

A strategy for extending the continuous-time method of reference 13 to discrete systems 
that a here.  
Clearly, the first task was to perform

athe

 
 
the continuous bilinear sy
 
 

Strategy for Developing and Verifying Extension

 
re of interest in this report was defined by the present authors and is summarized 

 a careful review of the paper to understand the key 
m matical operations that had to be performed.  The next task was to verify the analytical and 
numerical results for the illustrative example given in the paper.  This would allow intermediate 
numerical results associated with the various stages of analysis using the bilinear equations of the 
example to serve as a basis for evaluating numerical results obtained at similar stages of analysis 
while developing the new procedure.  This task would also provide experience in the application 
of relevant numerical integration techniques as well as identify any numerical issues that might 
be associated with such computations.  The next major step was to devise the pulse loading 
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patterns needed for computing the discrete second-order off-diagonal kernels that arise in the 
case of multi-inputs to complement the known patterns needed for computing the on-diagonal 
second-order kernels.  A subtask of this step was to verify the first- and second-order discrete 
kernels computed using these pulses by comparing them to the discretized versions of the 
continuous kernels for the example problem in reference 13.  The next task was to define a 
candidate procedure for extending their method to the more general problem of identifying 
bilinear state-space representations of nonlinear discrete-time systems while retaining as much of 
the already-established procedure of reference 13 as possible.  The final step was to evaluate the 
candidate procedure by applying it to a variety of nonlinear equations and comparing response 
time histories obtained using the identified bilinear model with results obtained from direct 
numerical solution of the governing nonlinear equations.  These tasks are discussed in the 
remaining sections of this report.   
 
 

Confirmation of Bruni, di Pillo, and Koch Results  
 

The first major task of the verification process was to carefully review the analytical and 
omputational bases for the m Bruni, di Pillo, 

and Koch in refer ulations that are 
implied by equations 9, 11, and 12 above were carried out both analytically and numerically 

ch (ref. 13) to illustrate the application of their 
ethod considers the following continuous-time bilinear system, with n = 2, r = 2, and m = 1: 

 

 
c ethod of bilinear system identification presented by 

ence 13.  Once the method was understood, the algebraic manip

using their example to reproduce the results shown in the paper.  This critical evaluation 
provided the insight (and confidence) needed to proceed with the subject development.  The key 
aspects of this evaluation are summarized below. 
 

Example Problem  
 
 The example used by Bruni, di Pillo, and Ko
m

                                                   
1 1 1 2 2 2 1

2 1 2 1 1 2 1 22

2

x x x u x u u
x x x x u x u u= − + + +                                              (13) 

y x

= − + + +

=
 

pace matrix equations are 

                                            c                                                 (14a) 

                                           

       

The corresponding first-order state-s
 

 
r

c c j jX A X N X u B u= + +∑  
1j=

                        
 

 c c cy C X D u= +                                                                                                               (14b)                        

ate matrix c, f ce matrix c, output matrix Cc,  Dc, 
u, and sta

 
where the st  A or  B direct transmission matrix
bilinear matrices Nc1 and Nc2, force input vector te vector X are given by 
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[ ] [ ]1 0 1 0
; ; 0 1 ; 0 0 ;

1 2 0 1c c c cA B C D
−⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
                               (15) 

Volterra Kernels 
 
 Substituting Ac, Bc, Cc, Nc1, and Nc2 given above into equations A1 and A2 from Appendix 

, noting that  
 

 

1 1
1 2

2 2

0 0 1 1
; ; ;

1 1 0 0c c

x u
N N X u

x u
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤

= = = =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 

A

                                        2 2

0
cA t

t t te
te

e e e

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦−

=                                                  (16) 

 
and then carrying out the oper uations leads to 
 

ations indicated in those eq

 

                                                 1 1 1 1
2(2)

1 1

1

(1)

1 1 1 1

( ) (1 ) ( )
( ) ( )

w e e
w e

τ τ

τ

τ δ τ
τ δ τ

− −

−

−
−

= −

=
                                           (17)        

nd 

           
)

a
 

(1,1) ( , ) (2w e

 

1 2 2

2

2 2 1 2 1 2

1 2 2

2
2 1 2 1 1 1 2 1

2(1,2)
2 1 2 1 1 1 2 1

2 2(2,1)
2 1 2 1 1 1 2 1

2 2(2,2)
2 1 2 1 1 1 2 1

) ( ) ( )
( , ) ( ) ( )
( , ) (2 2 ) ( ) (
( , ) ( ) ( ) ( )

e
w e
w e e e e
w e e

τ τ τ

τ

τ τ τ τ τ τ

τ τ τ

δ τ δ τ τ
τ τ δ τ δ τ τ
τ τ

τ τ δ
τ τ δ τ δ τ τ

− −
− −

−
− −

− − − − −
− −

− −
− −

− −

= −

= + − − −

= − −

−=

  
τ δ τ τ

           (18) 

as the expressions for the first- and second-order Volterra kernels, respectively.  The 
requirement

 

2 1 0τ τ≥ ≥

an s
that is imposed in reference 13 implies that the second-order kernels are 
ymmetric).  That is, they are nonzero only in the domain of space defined triangular (rather th

by 2 1 0τ τ≥ ≥ .   The terms 1 1( )δ τ−  and 1 2 1( )δ τ τ− −  are unit step functions that were introduced in 
reference 13 for notational convenience to allow some upper limits of integration to be extended 
to the same value of time.  In practice, such step functions are usually not shown but are assumed 
to be part of the kernels for brevity of notation.  
 
 The expressions given in equations 17 and 18 were verified following the steps noted 
above.  Then, substituting Ac, Bc, and Cc from equation 15 into equation 9, using equation 16, 
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and integrating analytically over the time interval [t1, t2] = [0, 1] as in reference 13 resulted in the 
 and

 15 and the second-order kernels from equation 18 into 
quation 11, using equation 16, and integrating the resulting expression analytically first over 

G  H matrices shown in the paper.     
 
 The Kj are calculated using equation 11, which involves the evaluation of a double integral.  
Substituting Ac, Bc, and Cc from equation
e

2dτ  from 1τ  to 11 τ+  and then over 1dτ  from 0 to 1 as in reference 13 yield the matrices K1 and 
K2 shown in the paper.  This integration is facilitated if a change of variable is made from 

2( , )1τ τ  to 1( , )Tτ according to 2 1( )Tτ τ= + , where T represents the varying time lag used to 
compute the components of the second-order kernels.  The integration limits for T become  
[t1, t ], the same as for 1

     
2 τ , as indicated in equation 19 below: 

 

                                         
2 2 1 2 2

2 1[ ] [ ]
t t t t

j

τ

K d d d 1T d
1 1 1 1 1t t t tτ

τ τ
+

= ⇒∫ ∫ ∫ ∫ τ                                          (19) 

 

Introducing this change of variable in equations 17 and 18, the expressions for the first- and 
econd-order Volterra kernels take the form 

+

 

s
 

                                            
(1)
1 1
(2) 2

( ) (1 ) ( )t t

t

w t e e tδ

1 1( ) ( )w t e tδ

− −
−

−

= −

−=
                                                    (20) 

 

 

1

and 

(1,1) 2( )2
2 1 1
(1,2) 2( )
2 1 1
(2,1) ( ) 2( ) 2 2
2 1
(2,2) 2( )2
2 1 1

( , ) (2 ) ( ) ( )
( , ) ( ) ( )
( , ) (2 2 ) ( ) ( )
( , ) ( ) ( ) ( )

t Tt T

t T

t T t T t T t T

t Tt T

w t T e e t T
w t T e t T
w t T e e e e t T
w t T e e t T

δ δ
δ δ

δ δ
δ δ

− +− −
− −

− +
− −

− + − + − − − −
− −

− +− −
− −

= −

=

= + − −

= −

                               (21) 

 
 The limits of integration on the variables 2τ or T inherently contain the intended effect of 

tep functions (i.e., imposing the requirement 2 1τ τ≥the s  or T ≥ 0) and there is no need for 
plic

ume
ex it consideration of the step functions in equations 18 or 21 in either the analytical or 
n rical evaluation of the jK integrals.  Therefore, all components of the second-order kernels 
can be plotted as though starting from time zero for purposes of evaluating the integrals jK in 
equation 19.  The shifting of the components of the second-order kernels in this manner, in 
combination with the change of variable noted above, was found to simplify the coding 
associated with evaluation of the jK integrals and so was adopted for use in the present work
 

. 
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 The defining integrals for G, H, and Kj given in equations 9 and 11 were also evaluated 
numerically in anticipation of that requirement in the discrete version of the method.  Several 
ombinations of values for the continuous time increments dt and dT were used in the numerical 
tegr

 dt = 0.01 sec, dT = 0.1 sec, and ncomp = 10 to evaluate those 

 
and 3) are continuo  and A2 using the 
ontinuous bilinear state-space m econd-order 

c
in ations and the results compared to assess the sensitivity of the results to the values 
employed.  For example, using dt = 0.00001 sec, dT = 0.0001 sec, and ncomp = 10000 produced 
results that were in exact agreement with the analytical results shown in the paper.  G and H 
were found to be much less sensitive to the values used than the Kj , with values of dt as large as 
0.01 giving results that are within 2% of the analytical values of G and H.  Although the Kj were 
more sensitive to the values used for dt and dT, it was found that the resulting values for Ncj 
obtained from equation 12 were not unduly sensitive to the values of dt and dT as long as the 
behavior of the influential portions of the kernels were adequately included in the numerical 
evaluation of the integrals.  For example, good results were obtained using the much coarser 
values dt = 0.01, dT = 0.1, and ncomp = 10.  These results suggest that acceptable results for the 
computed system response time histories that are ultimately of interest can be obtained using a 
coarser (and therefore more computationally efficient) set of time values in the numerical 
evaluation of those integrals. 
 
 The continuous first- and second-order kernels defined by equations 20 and 21 are shown 
in figures 2 and 3, respectively, where they are plotted versus time index k over a time interval 
epresenting three seconds usingr

equations.    The 10 components of each second-order kernel that are shown are all plotted as 
though originating at time t = 0.  However, as mentioned earlier, the presence of the unit step 
functions in the defining expressions (equations 18 or 21) implies that the components are each 
actually shifted in time to the right.  This shift is by an amount that is an increasing integer 
multiple of dT according to T = idT, for i = 0, 1, 2, …, ncomp-1.  Note that the pulse response 
functions have a finite or fading memory in that they all decay rather quickly to essentially zero.    
 
 It should be noted that the time index k is used on the time axes in figures 2 and 3 rather 
than the actual time t.  While either variable can be used in plotting time histories because they 
re related according to t = k ∆t, k = 0,1,2,…,N-1, time index is used throughout this report.   a

 
Conversion of Continuous Kernels to Discrete Kernels 

 
 The first- and second-order kernels given by equations 20 and 21 (and plotted in figures 2

us kernels because they were obtained from equations A1
atrices given in equation 15.  Also, recall that the sc

kernels 2w are triangular kernels as they are defined for 1 2τ τ≤ (i.e., T ≥ 0).  The present 
adaptation of the method of reference 13 to address the title problem is based on using the 
extension of an existing discrete kernel calculation procedure that produces symmetric second-
order ke els (refs. 1, 3, 24).  To enable direct comparisons o screte kernels obtained using 
that procedure with the continuous kernels of reference 13, one needs to discretize the first-order 
continuous kernels and both discretize and symmetrize the continuous second-order kernels.  
This conversion is made by multiplying the first-order continuous kernels by the time step ∆t and 
the continuous second-order kernels by (∆t)2/2.  The result of applying this continuous-to-
discrete conversion to the continuous kernels in figures 2 and 3 leads to the discrete kernels 
shown in figures 4 and 5.   

rn f the di
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Some Relevant Observations and Comments 
 
 A number of observations were made while making the calculations associated with the 
studies noted above.  Sev e noted below: 

(1
3.  The 

upper limit must be chosen so that it includes all the significant contributory portions of 

the kernels as time-
lagged quantities and facilitates computer coding.  This was done in the present 

e second-order kernels are shifted to the time origin as was done in 
reference 13.  This approach was also employed in the present implementation. 

tion are 
small enough to capture the time-varying behavior of the kernels over their time range 

 

e second-order kernels by (∆t) . 

rns for Calculating Discrete Volterra Kernels  
 

As stated in
comput screte 
nonlinear system to identify the state-space matrices of an approximate discrete bilinear-equation 

eral of those pertinent to computational issues ar
 

) The lower limit of time integration t1 is always 0.  However, the upper limit of 
integration t2 need not be 1 as used in the numerical example of reference 1

the relevant Volterra kernels.  To this end, one needs to inspect the computed 
components of the second-order kernels to identify their upper range of influence (i.e., 
the time interval over which their contribution to the integrals defining Kj is not 
negligible) and then set the upper limit of integration accordingly. 

 
(2) Introduction of the time lag T in the double integrals for Kj via a change in variable 

allows for the direct interpretation of the components comprising 

implementation. 
 
(3) The numerical evaluation of the Kj integrals is facilitated considerably if all the 

components of th

 
(4) Numerical evaluation of the integrals defining G, H, and Kj is straightforward and 

provides satisfactory results for the Nj if the time increments used in the integra

of influence. 

(5) Continuous kernels are discretized by multiplying the first-order kernels by the time 
step ∆t and th 2

 
(6) Triangular second-order kernels (as assumed in reference 13) are made symmetric by 

dividing them by two. 
 
 

Pulse Loading Patte

  the Introduction, the objective of the present investigation is to develop a 
ational procedure for using the first- and second-order Volterra kernels of a di

representation of the nonlinear system.  Thus, discrete-time, first- and second-order Volterra 
kernels are central to the present formulation.  The calculation of the first-order kernel for a 
linear system is straightforward.  One simply imposes a unit-amplitude pulse of (small) duration 
Δt at t = 0 for each input of interest and computes the corresponding response time histories for 
all outputs of interest.  Functions carrying out this type of calculation for linear equations are, for 
example, included in the Control System Toolbox of MATLAB (ref. 29).  However, here, 
following references 1 and 3, the relation  
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                                       ( )

1 1 11 , 1,2,...,2 0.5p p rk y y == −                                          (22) 
 
is used to compute the first-order kernels for each input, where y1 is the response of the nonlinear 

ulse applied at t = 0 and y11 is the respon
o unit pulses applied at t = 0.  The calculation is done in this manner so that the computed 

pulses applied to the system 
qual to the order of the kernel of interest.  Thus, the second-order kernel, k2, is the response of 

here y , y , and y12 are subsidiary pulse responses corresponding to three separate pulse loading 
appropriately in time at the inputs of interest.  Speci

e system to a unit pulse applied at time t, y2 is the response of the system to a unit pulse applied 

system to a single unit p se of the nonlinear system to 
tw
response k1 is the linear portion of the nonlinear response (i.e., linearized solution about a 
nonlinear steady-state condition) rather than the purely linear response (i.e., linear response 
computed using linear equations).  If k1 is computed using equation 22, some of the amplitude 
dependence of the nonlinear system is accounted for in that kernel. 
 
 The calculation of the higher-order kernels is more involved as they are the responses of 
the nonlinear system to multiple unit pulses, with the number of 
e
the system to two separate unit pulses applied at two points in time and is therefore a two-
dimensional function of time.  The variation of the time difference (i.e., time lag) between the 
two pulse inputs yields the components of the kernel and allows for the characterization of the 
second-order memory of the system.  Following references 1 and 3, the second-order kernels are 
computed here using the relation 
 
                           ( , )

2 12 1 2 , , 1,2,...,0.5 ( )p q p q rk y y y == − −                                      (23) 
 
w 1 2
patterns imposed fically, y1 is the response of 
th
at time (t + T), and y12 is the response of the system to two unit pulses, one applied at time t and 
the other at time t + T.  It should be noted that for time-invariant systems, the y2 responses can be 
obtained by simply shifting the y1 response appropriately in time, thereby effectively requiring 
the calculation of only 2 subsidiary responses.  In all the calculations, the times are chosen to 
satisfy the relation t ≥ T, resulting in kernels that are symmetric about t = T.  The three responses 
are substituted into equation 23 to yield one component of the second-order kernel.  The time lag 
T is then varied to obtain additional components of the second-order kernel.  There are r2 kernels, 
k2

(p,q); each kernel has ncomp components; each component is an m×1 vector.  The first 
component of k2 is defined when T = 0, i.e., when both pulses are applied at the same point in 
time.  The last computed component of k2 is defined for T = (ncomp–1) ∆T.  The number of 
components needed to accurately define a second-order kernel depends on the nonlinear system 
under investigation.  In general, the greater the nonlinearity, the greater the number of 
components required.  A discussion of the use of pulse inputs for computing symmetric second-
order kernels for cases involving a single input or the on-diagonal (p = q) second-order kernels 
for cases involving multiple inputs is given in references 1 and 3.  The discrete kernels given by 
equations 22 and 23 are related to the continuous triangular kernels of reference 13 according to 
 
                                              ( ) ( ) ( )

1 11
p p p

cdk w w t= = Δ                                                  (24a) 
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, ) 2( )q t                                                    ( , ) ( , ) (
2 22

1
2

p q p q p
cdk w w= =

f the multi-input case, including 
iagonal (p ≠ q) kernels  that account for the full set of input/output interactions associated with 

 subsequently devised based on the 

 
Proposed Computational Procedure  

 
 During the course o ed a notional model for 
 candidate computationa  of identifying bilinear 

 as follows: (1) 
omp

Δ                                    (24b) 

 
 The complete treatment o the calculation of the off-
d
the MIMO case, has apparently not been addressed for time problems in the literature and had to 
be defined for the present study.  Based on insight gained from ancillary studies as part of this 
investigation, the authors proposed pulse-loading patterns that were deemed to be appropriate for 
computing the off-diagonal kernels in the case of two inputs.  These patterns are shown in 
Appendix B, where they are included in the schematic depiction of the pulse loading patterns 
needed for computing the full set of first- and second-order kernels for the special case of two 
inputs.  The necessary calculations were coded in MATLAB and provided the results shown in 
figures 6 and 7.  Figure 8 shows the components of the second-order kernel depicted in figure 7 
shifted to time index zero.  The results of figures 6 and 8 are in excellent agreement with the 
discretized results of reference 13 as given in figures 4 and 5 and established the credibility of 
the proposed procedure for calculating off-diagonal kernels.   
 
 A pulse-loading process for extending the complete kernel calculation procedure for two 
nputs to the general case of an arbitrary number of inputs wasi

insight gained in the studies for the case of two inputs.  The “algorithm” describing that process 
is given in Appendix C.     

 

f the work described above, there slowly emerg
l procedure that addresses the broader problema

state-space representations of discrete nonlinear systems using Volterra kernels that is of interest 
here.  In particular, it became evident quite early that as much of the continuous process of 
Bruni, di Pillo, and Koch (ref. 13) as possible should be used as the basis for extending their 
procedure to the discrete case.  In particular, direct use should be made of their procedure to 
identify the state-space matrices for continuous bilinear systems as given in equation 14.  This 
expedient clearly portended a blend of continuous and discrete numerical operations and 
suggested that recourse be made to appropriate MATLAB functions where needed to effect 
conversions between continuous and discrete linear state-space matrices.  Once this key decision 
was made, the desired extension to the discrete case was greatly facilitated and the remaining 
steps needed to complete the extension to the discrete case were forthcoming.    
  
 Assuming that the nonlinear ODE or PDE of the system of interest have been discretized, 

e primary steps envisioned for the candidate computational procedure wereth
C ute the first- and second-order discrete kernels of the discretized nonlinear system.  (2) Use 
the computed first-order kernels in a linear discrete SID algorithm such as ERA (ref. 30) to 
identify the discrete state-space matrices Ad, Bd, Cd, Dd.  (3) Transform the discrete-time matrices 
Ad and Bd to continuous-time matrices Ac and Bc using the MATLAB function d2c.m.  No 
conversion of Cd and Dd is required as the C and D matrices of the continuous model are the 
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same as those for the discrete model (i.e., (Cc, Dc) = (Cd, Dd)) (ref. 30).  (4) Transform the first- 
and second-order discrete kernels into continuous kernels by multiplying them by 1/∆t and 
2/(∆t)2, respectively.  (5) Numerically evaluate the integrals defining G, H, and Kj (eqs. 9 and 11) 
and then compute Ncj (eq. 12).    
 
 The matrices Ac, Bc, Cc, Dc, and Ncj so determined are the state-space matrices for an 
pproximate continuous bilinear representation of an underlying discrete nonlinear system.  With 

Discretization and Numerical Solution of Continuous Bilinear Equations  

 s-
me bilinear model of an underlying nonlinear discrete-time system.  This model must be 
iscre

 and is the simplest one-step method 
vailable.  However, it is regarded to be of limited value for practical calculations because of its 

 

a
due regard to the ultimate objective of identifying the state-space matrices corresponding to 
discrete bilinear representations of nonlinear discrete-time systems, the continuous bilinear 
equations represented by Ac, Bc, Cc, Dc, and Ncj must be discretized.  Some comments relevant to 
this aspect of the process are given in the next section.  
 
 

 
As noted above, the matrices Ac, Bc, Cc, Dc, and Ncj define an approximate, continuou

ti
d tized to obtain the desired discrete-time bilinear state-space representation.  This can be 
done, for example, by using one of the Runge-Kutta methods of solution, all of which are self-
starting (one-step) methods.  The Euler method is a classic example of this approach.  If more 
accuracy is needed, recourse can be made to a non-self-starting (multi-step) predictor/corrector 
procedure, where the set of needed starting values is obtained by applying a one-step method 
near the starting point.  Discussions of the nuances associated with the application of such 
techniques may be found in references 31-35, for example.  All of these methods approximate 
the derivatives in the differential equations by appropriate finite-difference expressions involving 
the dependent and independent variables in the equations. 
 
 Euler’s method is a first-order Runge-Kutta method
a
degraded accuracy for large step sizes.  Second-order Runge-Kutta algorithms include two 
formulations that are called improved Euler and modified Euler methods, respectively (ref. 31).  
The fourth-order Runge-Kutta method is probably the most popular one-step method and is used 
in the MATLAB ODE solver ode45.  In spite of the simplicity of Euler’s method, it was found to 
be applicable to most of the numerical calculations that were made as part of the illustrative 
examples used in this report.  In those few cases where it was judged unsatisfactory, recourse 
was made either to the improved Euler method or to the use of the MATLAB function c2d to 
discretize the bilinear equations in a manner to be described below.  When appropriate, the 
solver ode45 was used to obtain and compare the response time histories of the original 
continuous nonlinear equation and its identified continuous bilinear state-space equation 
representation.  Considerable use was also made of the MATLAB functions lsim, dlsim, 
dimpulse, and impulse as part of the many numerical checks that were made during development 
of the MATLAB scripts employed for the illustrative examples.             
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Some Alternative Approaches for Discretizing Bilinear State-Space Equations 

 A ear 
equations used in the Illustrative Results secti e use of low-order Runge-Kutta 

rmu

ation 

        

 
s mentioned above, discretization of the continuous-time original and identified bilin

on relied on th
fo las (Euler and improved Euler) and the MATLAB function c2d, for convenience.  The 
resulting forms of these equations for the case of two inputs are summarized here. 
 
 The Euler forward-difference discretization of equation 14a results in the equ
 

               
1

( 1) ( ) ( ) ( ) ( ) ( )
rX k X k

c c j c j
j

A X k B u k u k N X k+ −
= + +∑                               (25) 

t =Δ

which can be rewritten as  

                   )

 

             )                                  (26) 

The algebraic definitions of the discrete matrices appearing in equation 26, and their numerical 
alues for ∆t = 0.01, are as follows: 

                  

⎤
⎥
⎦

⎤
⎥

                      (27) 

 
 

If the improved Euler method is applied to equation 14a as described in reference 26, the 
iscrete matrices given in equation 27 are replaced by   
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3 6 / 6

0.0098500 0.98020

0.0099500 0
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= Δ Δ + = ⎢ ⎥
⎣ ⎦

⎡ ⎤
= Δ Δ + + = ⎢ ⎥

⎣ ⎦

= Δ Δ + + =
0 0.0098500

0.000050000 0.000050000
⎡ ⎤
⎢ ⎥
⎣ ⎦

       (28) 

 
 The m-file c2d found in the MATLAB control toolbox converts linear state-space models 
from continuous-time to discrete-time using the expression [Ad, Bd] = c2d (Ac, Bc, ∆t).  The 
algorithm underlying this function calculates Ad and Bd using the matrix exponential expression 
 

                
220 ( )expm

0 0 0 0 0 0 0 0 2!
c c c c c cA B I A B A B tt t⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ Δ

Δ = + Δ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                  (29) 

 
from which one obtains (for ∆t = 0.01)  
 

     

2 3
2 3

2 3
2
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2

0.99005 0( ) ( )
0.0098512 0.980202! 3!

( ) ( )0
2! 3!

0.0099502 0( ) ( )
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t tB B t A B A B

t tI t A A B

⎡ ⎤Δ Δ
= + Δ + + + = ⎢ ⎥

⎣ ⎦

Δ Δ
= + Δ + + +

⎡ ⎤ ⎡ ⎤Δ Δ
= Δ + + + =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

                    (30) 

 
The relevant discrete equation is again given by equation 26 with d j cjN N t= Δ . 
 
 The function c2d can also be used to convert bilinear state-space models from continuous-
time to discrete-time more directly and more accurately.  This is done using the MATLAB 
expression [Ad, Bd] = c2d (Ac+u1Nc1+ u2Nc2, Bc, ∆t), where the matrices ujNcj are input in 
combination with the input matrix Ac (see, for example, ref. 23).  Note that this expression must 
be invoked at each time step as u1 and u2 will typically vary with time.  The corresponding 
expressions for Ad and Bd at each time step can be obtained by replacing Ac in equations 30 with 
Ac+u1Nc1+ u2Nc2 and result in the forms 
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               (31) 

 
The relevant discrete equation now has the linear form  
 
                                                   ( 1) ( ) (d dX k A X k B u k)+ = +                                                 (32) 
 
rather than the bilinear form of equation 26 because the effects of the bilinear terms are 
incorporated into the calculated values of Ad and Bd given in equation 31. 
 
 The output equations corresponding to the various forms of equation 26 shown above all 
have the form  
 
                                                          ( ) ( ) ( )d dy k C X k D u k= +                                                 (33) 
 
where Cd and Dd are the matrices previously computed as part of the linear SID process in step 2 
of the proposed computational procedure described earlier. 
 

Some Additional Comments Related to Numerical Computations 
 
 It has been implicitly assumed that the continuous nonlinear differential equations of the 
original system have been discretized using finite-difference techniques and that an approximate 
continuous bilinear model of those equations has been obtained as described in this report.  In 
this process, it is assumed that the time increment ∆t used to discretize the temporal derivatives 
is sufficiently small to ensure that the unit-amplitude pulses that are imposed on the discrete 
model to compute its Volterra kernels produce a response that is effectively the impulse response 
of that system.  CFD models resulting from finite-difference discretizations of specializations of 
the Navier-Stokes equations, for example, readily meet this requirement as the time increments 
typically used for that purpose are quite small.  The same value of ∆t can be used to discretize 
the identified continuous bilinear model to obtain the desired discrete bilinear model. 
 
 The size of ∆t also affects other aspects of the numerical calculations.  Specifically, its 
value must be chosen small enough to adequately evaluate both the single integrals defining G 
and H and the double integrals defining Kj.  The size of ∆t also influences the value chosen for 
the discrete time increment ∆T used to vary the time lag T.  This consideration is driven by the 
need to balance the smallness of ∆t with the different (but usually larger) smallness acceptable 
for ∆T to reduce computation time in the numerical evaluation of the double integrals.  The size 
of ∆t also influences (through ∆T) the number of components, ncomp, which need to be 
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computed for the second-order kernels to ensure having the fidelity needed to represent system 
behavior. 
 
 As mentioned earlier, the solutions for the matrices G, H, Kj, and Nj given in the example 
of reference 13 were confirmed by the present authors as part of the vetting process.  This was 
done both analytically (by formally integrating the relevant integral expressions) and then 
numerically (using ∆t = 0.00001, ∆T = 0.0001, and ncomp = 10000).  Note that the matrices G, 
H, and Kj are intermediate matrices that are computed and then used to calculate the desired 
matrices Nj.  Since all of these matrices must be calculated numerically in practice, it was of 
interest to obtain an indication of how much the final matrices Nj (and hence the response time 
histories obtained from the identified bilinear equations) could vary with changes in ∆t, ∆T, and 
ncomp.  Numerical simulations in which these parameters were varied systematically were 
performed to elicit this information.  These simulations indicated that the results were relatively 
insensitive to the values chosen for those parameters as long as they represented a triplet of 
values that adequately captured the time-varying behavior of the significant portions of the 
kernels used to characterize the nonlinear system. 
   
 The discrete-time state-space matrices Ad, Bd, Cd, Dd identified using ERA were found to 
provide (via d2c.m) excellent approximations to the continuous-time ABCD needed to identify 
Ncj using the method of reference 13.  This was exemplified by the fact that ode45.m solutions 
obtained using the original and identified continuous linear equations were in exact agreement in 
all the cases investigated.   
 
 

Illustrative Results 
 

 Clearly there is a need to verify that the discrete kernels and the resulting discrete bilinear 
state-space equations obtained by the method of this report are adequate representations of the 
underlying nonlinear system equations.  An acceptable level of confirmation can be obtained by 
evaluating the ability of the identified bilinear equations to predict the same response as the 
original nonlinear equations when subjected to the same inputs.  To ensure that the new 
computational procedure is evaluated sufficiently and provides a wide range of comparative 
results with which to judge the validity and capability of the procedure, it was decided to subject 
the new procedure to a broad collection of test cases.  The suite of test cases includes five SISO 
equations and one MISO equation.  Five of the equations are continuous differential equations 
and one is a difference equation.  Three of the equations are bilinear and three are nonlinear.  
Several input time histories were also defined and used in the present investigation.  Many of 
these are novel in that they are atypical inputs devised to excite the systems in interesting and 
unusual ways.  The set of inputs includes classical inputs such as steps and sinusoids and several 
novel inputs consisting of various combinations of different types of inputs (pulses, steps, ramps, 
sinusoids, and random). 
 
 As noted earlier, it is assumed that the continuous nonlinear differential equations 
describing the original or actual system have been discretized appropriately using established 
finite-difference modeling techniques.  These discretized equations are the starting point for the 
present procedure and are used to compute both the first- and second-order discrete kernels 
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needed by the procedure, and the response time histories that are regarded as the actual (or 
baseline) time histories of the original system to the imposed loadings.  The continuous bilinear 
state-space representation obtained by the present method is discretized using one of the 
discretization approaches described earlier in this report.  Of course, if the original continuous 
equations are already bilinear in form as in some of the illustrative examples, one of those 
approaches can be used to discretize the original equations.  Pulse loading patterns were imposed 
as discussed earlier and depicted in Appendix B to compute the discrete kernels needed.  The 
first-order kernels were computed using equation 22 while the second-order kernels were 
computed using equation 23.   
 
 The set of results presented for each example begins with the presentation of the discrete 
time histories of the first- and second-order discrete kernels that were computed using the pulse 
loading method of this report.  In the present case, these kernels serve to characterize the 
dynamics of the systems treated and (when plotted) provide a pictorial indication of the extent of 
their temporal memory and hence time range of influence.  Comparisons of the time histories 
obtained from the original and identified equations subject to several types of inputs intended to 
exercise the identification procedure are presented next.  These time history comparisons served 
as the primary metric for evaluation of the method proposed in this report.  Linearized versions 
of the original equations (either nonlinear or bilinear) and the linearized versions of the identified 
bilinear equations always gave results that were essentially identical and these comparisons are 
not presented.  Nonlinear response time histories obtained by summing the first- plus second-
order convolutions of the computed kernels with the imposed inputs are also presented and 
compared to their corresponding nonlinear responses for several of the examples.  The first-order 
convolution responses were in all cases basically the same as the linear solutions and are not 
shown.  For completeness, both the continuous-time state-space matrices that were identified and 
their discrete-time versions are presented for the examples.    
 

Comment on MATLAB Scripts Used for Numerical Calculations  
 

 Several MATLAB scripts or programs were written and used for the studies that provided 
the numerical results for this report.  Each illustrative example had its own program, thereby 
allowing each program to be tailored to the nuances of the system treated.  This individuality 
also provided for easy incorporation of modifications to address what-if questions and 
computational issues.  The programs also contain considerable superfluous coding intended for 
providing the alternative computational paths discussed earlier that could be activated for 
checking key computational aspects of the scripts.  Such supplementary coding was also used to 
include options for selecting from a suite of several different types of inputs.  Although there 
were some limited studies conducted to identify the effects of varying the parameters ∆t, ∆T, and 
ncomp, there were no serious attempts to improve the overall results by tuning those parameters.  
Finally, as mentioned earlier, three existing MATLAB functions play a key role in the new 
methodology: ERA from the SOCIT Toolbox (ref. 30) and d2c and c2d from the MATLAB 
Control Toolbox (ref. 29).  
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Kernel Calculations, Convolutions, and Bilinear System Identification for SISO Systems 
 

 Five examples were selected from the literature to illustrate the SISO case: two bilinear 
systems and three nonlinear systems.  To better demonstrate the identification capabilities of the 
new procedure, several novel inputs were devised and imposed on both the original and 
identified system equations and the resulting time histories compared.  Zero initial conditions 
were assumed for the calculations.  As mentioned earlier, these time history comparisons served 
as the primary metric for evaluation of the new procedure.   
 
Example 1: Bilinear Equation 
 
 The bilinear differential equation given by 
 
                                                                                                    (34) 1 o o oy a y a y b u n y u+ + = +
 
was used in reference 1 to illustrate the calculation of discrete Volterra kernels using pulse 
inputs.  The state-space form of this equation can be written as 
 

                                                                                                         (35) c c

c c

X A X N X u B
y C X D u
= + +

= +
c u

]cD =

 
where 
 

                            (36) [ ] [
1

0 1 0 0 0
1 0 0

0c c c c
o o o

A N B C
a a n b

⎡ ⎤ ⎡ ⎤ ⎧ ⎫
= = = =⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎩ ⎭

 
The constants in these matrices were arbitrarily chosen as ao = 2, a1 = 3, no = – 6, and bo = 1 in 
the subject example.  An input consisting of a single sawtooth wave ramping up from 0 to 1.0 
over the time interval t = 0.1 to 1.1 seconds and zero elsewhere was applied to the system.  Using 
a time step of 0.01 seconds, time histories were computed for 600 time points.  The time between 
computed components of the second-order kernel was varied in increments of 10 time steps 
(∆T=10∆t).  Components of the second-order kernel were computed for 30 values of the time lag 
T.  Thus, pertinent parameters for the numerical calculations are: N = 600, ∆t = 0.01 sec, ∆T = 
0.1 sec, and ncomp = 30. 
 
 The state-space matrices corresponding to an Euler forward-difference approximation of 
the first-order form of the governing equations given by equation 35 are  
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                                              (37) 

 
If the improved Euler method is used to discretize equations 35 the matrices above become   
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                     (38) 

 
Either finite-difference approximation is acceptable for this system and provides the discretized 
equations that can be used to compute both the kernels and response time histories of the original 
system.  These kernels are then used in the procedure of this report to identify the state-space 
matrices of a new continuous bilinear representation of the original system.  Either 
approximation can also be used to discretize the continuous bilinear equation that is identified by 
the process.  For consistency, however, the same finite-difference approximation should be 
applied to both the original and identified equations.  The improved Euler method was employed 
here.   
 
 The state-space matrices of the identified continuous bilinear model are 
 

                                         
-1.1147e-002 -1.2313e+000
1.5971e+000 -2.9887e+000cidA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

                                         
-1.4956e+000
2.4450e+001cidB ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                                                                                                                   (39a) 
                                        ] [-2.8813e-002 -1.7605e-003]cidC =
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                                         [0]cidD =
 

                                         
-2.3027e-001 -1.3404e-002
4.2240e+000 2.4316e-001cidN ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
These matrices were substituted into equation 38 to obtain the improved Euler discretized 
version of the identified continuous bilinear model.  The state-space matrices of the resulting 
discrete bilinear model are 
 

                                          
9.9979e-001 -1.2128e-002
1.5732e-002 9.7046e-001didA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

                                           
-1.6461e-002
2.4072e-001didB ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                                                                                                                   (39b) 
                                          ] [-2.8813e-002 -1.7605e-003]didC =
 
                                           [0]didD =
 

                                           
-2.5635e-003 -1.3282e-004
4.1608e-002 2.0978e-003didN ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
 The numerical results presented in reference 1 for both the first- and second-order kernels 
and the linear and bilinear responses to the single sawtooth input were replicated as a prelude to 
investigating system response to additional types of inputs (sine, random, up/down ramps, 
double sawtooths, oscillatory exponential, and steps).  The computed first- and second-order 
kernels are shown in figures 9 and 10, respectively.  Figure 11 shows the components of the 
second-order kernel shifted to time index zero for computation of Kj.  The time histories 
computed using the identified discrete bilinear equations were in excellent agreement with the 
time histories computed using the discretized original bilinear equations for all of the input cases 
investigated.  For example, figure 12 shows the responses of the linear system (Nd = 0), the 
original bilinear system, and the identified bilinear system to a unit step input imposed at t = 0 (k 
= 0).  The agreement between the original bilinear and identified bilinear responses, the primary 
metric for evaluation of the present procedure, is excellent over the time range shown.   While 
there is a maximum difference of 120% between the linear and the original bilinear responses, 
the maximum difference between the original bilinear and identified bilinear responses is less 
than 1%.  A similar set of response time histories obtained for the double sawtooth input shown 
in figure 13 is presented in figure 14.  The agreement between the original bilinear and identified 
bilinear responses is also excellent in this case but the corresponding differences (31% and 7%, 
respectively) are not as dramatic as for the step input case in figure 12.  
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Example 2: Nonlinear Circuit 
 
 The governing nonlinear equation for the current in a series circuit consisting of a linear 
inductance, a nonlinear resistance, and a voltage source is described by a Riccati equation having 
the form 
 

                                                    2 ( )dy y y u t
dt

α ε+ + =                                             (40) 

 
This equation was used in reference 3 to illustrate the discrete-time application of the unit-
impulse-based continuous kernel identification technique that was introduced in reference 24.  
The equation was discretized using an Euler forward-difference approximation according to   
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Δ
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                                     (41) 

 
using a time step of 0.01.  The parameters α and ε were set to 0.1 and 0.001, respectively, and 
correspond to the Case 2 example in reference 3.  The required sets of pulse time histories 
needed for calculating the kernels were computed for 5000 time points.  The first-order kernel 
was computed using equation 22.  Relevant components of the second-order kernel were 
computed using equation 23.  The first- and second-order kernels of equation 40 are plotted in 
figures 15 and 16, respectively.  Pertinent parameters for the numerical calculations are: N = 
5000, ∆t = 0.01 sec, ∆T = 1 sec, and ncomp = 20.   
 
 The identified continuous bilinear model is 
 
                                              [-1.0005e-001]cidA =  
 
                                                     [-4.4734e+000]cidB =  
 
                                                     [-2.2366e-001]cidC =                                                         (42a) 
 
                                                     [0]cidD =  
 
                                                     [-7.1993e-003]cidN =           
    
These matrices are substituted into equation 25 to obtain the Euler discretized version of the 
identified continuous bilinear model.  The resulting discrete bilinear model is 
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                                              [9.9900e-001]didA =  
 
                                                      [-4.4734e-002]didB =  
 
                                                      [-2.2366e-001]didC =                                                        (42b) 
 
                                                     [0]didD =  
 
                                                     [-7.1993e-005]didN =  
 
 The responses of this system were first determined for the same series of step inputs 
applied in reference 3 to confirm the ability to replicate the linear and nonlinear results presented 
there.  These initial calculations made direct use of the first- and second-order kernels to 
compute the linear and nonlinear responses to the step inputs employing the same convolution 
techniques used in reference 3.  Following these confirmations, the method of this report was 
applied to the subject equation to obtain the discrete bilinear model in equation 42b, and the time 
histories computed for several types of inputs.  For example, computed response time histories 
for a unit step excitation of the linearized Riccati equation, nonlinear Riccati equation, and the 
identified bilinear equation are shown in figure 17.  There is a maximum difference of 7% 
between the linear and the nonlinear responses, but a maximum difference of about 1% between 
the nonlinear and identified bilinear responses.  A similar set of time histories was also obtained 
for the more complicated input shown in figure 18 and is presented in figure 19.  The input of 
figure 18 is a combination of an exponentially-decaying sinusoid, a double sawtooth wave, and 
three pulses.  It should be noted that the identified bilinear response tracks the nuances of the 
nonlinear response well over the entire time interval shown.  The corresponding maximum 
differences in the responses for this composite input are 15% and 9%, respectively.                       
 
Example 3: Nonlinear Burgers Equation  
 
 The one-dimensional nonlinear partial differential equation given in equation 43  
 

                                                            
2

2

u uu
t x x

υ u∂ ∂ ∂
+ =

∂ ∂ ∂
                                                         (43) 

 
is known as Burgers equation and is often used as a simplified model of the Navier-Stokes 
equations for evaluating the performance of numerical methods in CFD calculations.  This 
equation was used in reference 3 to illustrate the effectiveness of discrete-time Volterra kernels 
when applied to a simple CFD model.  Equation 43 is usually written in the form (ref. 36) 
 

                                                                
2

2

u E
t x x

υ u∂ ∂ ∂
+ =

∂ ∂ ∂
                                                       (44) 

 
prior to applying a finite-difference approximation, where  E = u2/2. 
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 Applying a first-order forward difference approximation in time and a second-order central 
difference approximation in space to the continuous 1-D viscous Burgers equation given above 
yields 
 
 

    2

( , 1) ( , ) ( 1, ) ( 1, ) ( 1, ) 2 ( , ) ( 1, )
2 ( )

u i j u i j E i j E i j u i j u i j u i j
t x x

ν
⎡ ⎤+ − + − − + − + −⎡ ⎤= − + ⎢ ⎥⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦

  (45) 

 
 
or simply  
 
                                                ( , 1) ( , ) ( )u i j u i j t A Bν+ = + Δ −                                               (46) 
 
 
where  
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                                      (47) 

 
and i and j are the discrete space and time indices, respectively.  
 
 The numerical solution was implemented using a forward-in-time, central-in-space first-
order Euler method with 40 spatial grid points, 400 time points, a time step of 0.01, and a spatial 
step of 0.2, as in reference 3.  Viscosity ν was set to unity.  The end-point boundary condition 
grid point (grid point #1) is perturbed and the response to this perturbation is computed at the 
fifth grid point.  Pertinent parameters for the numerical calculations are: N = 400, ∆t = 0.01 sec, 
∆x = 0.2, ∆T = 0.01 sec, and ncomp = 10.   
 
 The numerical results presented for the Burgers equation example in reference 3 were 
verified using the new coding associated with the present procedure.  Because Burgers equation 
is a simplified version of the type of equation solved in CFD work, this equation was subjected 
to a variety of inputs in addition to those imposed in reference 3 to provide a broader base of 
results from which to evaluate the new procedure.   
 
 A low level of random excitation is included as part of several of the inputs used to excite 
the system to simulate a signal contaminated by noise.  This random excitation is generated using 
the MATLAB function randn.m, which generates a random signal having a standard normal 
distribution with mean zero, variance one and standard deviation one, and then multiplied by a 
small number (usually 0.2) to set the level of the desired noise.  The resulting random signal is 
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then either used as-generated or smoothed slightly by taking a moving average of its time history 
over a small number of time steps (usually 2-5) using the MATLAB function filtfilt.     
 
 A key step of any linear system identification process is to estimate the order of the system 
to be identified.  The ERA algorithm used in the present formulation does this by allowing the 
user to examine the magnitudes of the singular values that are obtained from a singular value 
decomposition (SVD) of the block Hankel matrix H(0) formed from the pulse responses 
(Markov parameters) of the system and to specify how many should be regarded as significant.  
(See, for example, the ERA-related discussions in reference 30.)  The SVD of the Hankel matrix 
obtained for Burgers equation yields 6 nonzero singular values with no clear demarcation 
between those that can be regarded as large and significant and those that can be regarded as 
small and negligible.  Assuming 5 significant singular values 3 so that the order of the identified 
system is 5, the matrices identified for the approximate continuous bilinear model are: 
 

-2.1725e+000 -2.9801e+000 1.7722e-001 7.6759e-002 -1.2702e-002
2.1458e+001 -3.8535e+001 1.4621e+001 3.1587e+000 -2.9964e-001
-6.8876e-002 -1.4481e+001 1.3185e-001 -3.2124e+000 1.2813e-001
3.1557e+001 -1.2808e+00

cidA =
2 6.1621e+000 -8.6268e+001 2.2075e+001

-1.3765e+001 5.4086e+001 -1.7055e+000 4.9460e+001 -1.4774e+001

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
-2.0856e+001
8.8328e+001
4.0119e-001
1.4960e+002
-6.5060e+001

cidB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

                                                

                                                                                                           (48a) 

 
[-7.9471e-002 -1.1843e-002  1.0676e-003 1.8120e-004 -8.7526e-006]cidC =  

 
[3.9062e-003]cidD =  

 
6.1416e-001 -1.1680e+000 3.0564e-001 -7.3164e-001 3.5517e-001

-4.1150e+000 7.2938e+000 -2.1442e+000 3.9978e+000 -2.0396e+000
-4.3236e-001 9.2021e-001 -2.0730e-001 5.4167e-001 -2.3519e-001
-1.1660e+001 2.4539e+00

cidN =
1 -5.5829e+000 1.4912e+001 -6.5899e+000

6.0556e+000 -1.2417e+001 2.9426e+000 -7.3781e+000 3.3137e+000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 
3 Although the results presented for this example were obtained assuming 5 significant singular values in the SID 
process, it was found that the selection of as few as two singular values led to acceptable results. 
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The continuous bilinear equations represented by these matrices were discretized using the first-
order Euler method of equations 27 resulting in the discrete bilinear model 
 

9.7828e-001 -2.9801e-002 1.7722e-003 7.6759e-004 -1.2702e-004
2.1458e-001 6.1465e-001 1.4621e-001 3.1587e-002 -2.9964e-003
-6.8876e-004 -1.4481e-001 1.0013e+000 -3.2124e-002 1.2813e-003
3.1557e-001 -1.2808e+000 6

didA =
.1621e-002 1.3732e-001 2.2075e-001

-1.3765e-001 5.4086e-001 -1.7055e-002 4.9460e-001 8.5226e-001

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
-2.0856e-001
8.8328e-001
4.0119e-003
1.4960e+000
-6.5060e-001

didB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥                                                                                                             (48b) 

 
[-7.9471e-002 -1.1843e-002  1.0676e-003 1.8120e-004 -8.7526e-006]didC =  

 
[3.9062e-003]didD =  

 
6.1416e-003 -1.1680e-002 3.0564e-003 -7.3164e-003 3.5517e-003
-4.1150e-002 7.2938e-002 -2.1442e-002 3.9978e-002 -2.0396e-002
-4.3236e-003 9.2021e-003 -2.0730e-003 5.4167e-003 -2.3519e-003
-1.1660e-001 2.4539e-00

didN =
1 -5.5829e-002 1.4912e-001 -6.5899e-002

6.0556e-002 -1.2417e-001 2.9426e-002 -7.3781e-002 3.3137e-002

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
 Representative results from these numerical simulations are summarized in figures 20-31.  
As before, the primary comparisons are those involving the responses obtained from the 
nonlinear and identified bilinear equations.  First- plus second-order convolution responses were 
also computed to provide an alternative solution of the nonlinear equation.  These latter 
responses were obtained by convolving the input time histories with the first- and second-order 
kernels, respectively, and then adding the resulting time histories.   
 
 The first- and second-order kernels for Burgers equation are shown in figures 20 and 21, 
respectively.  Note that all the nonzero-lag components of the second-order kernel are small and 
decay quickly with time compared to the first (zero-lag) component, indicating that the first 
component will be the dominant contributor to the second-order portion of the total response.  
Computed time histories delineating the extent to which the present method provides a suitable 
bilinear model for the subject equation for four different inputs are presented below. 
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 A comparison of the linear, nonlinear, and identified bilinear equation responses to the 
noisy unit step input of figure 22 is presented in figure 23.  The noisy portion of the step 
excitation is represented by an amplitude 0.2 random signal with no smoothing.  In this case, 
there is a maximum difference of 17% between the linear and the nonlinear responses, but a 
maximum difference of 5% between the nonlinear and identified bilinear responses. 
 
 A similar comparison of responses to the noisy sine wave input of figure 24 is given in 
figure 25.  The sine wave has a frequency of 5 Hz, amplitude of 0.5, and is contaminated with an 
unsmoothed random signal of amplitude 0.2.  The response obtained using the identified bilinear 
model is in good agreement with the nonlinear response over the time range presented.  There is 
a maximum difference of 4% between the nonlinear and identified bilinear responses, but a 
maximum difference of about 19% between the linear and the nonlinear responses.  First- plus 
second-order convolution responses were also computed for this input and compared to the 
nonlinear response to provide an alternative (direct Volterra kernel-based) solution to the 
problem.  These results are summarized in figure 26.  The convolution response is also in good 
agreement with the nonlinear response throughout the time range, with a maximum difference of 
6%. 
 
 A comparison of the linear, nonlinear, and identified bilinear equation responses to the 
random input of figure 27 is presented in figure 28.  The random signal used in this case had unit 
amplitude and was smoothed by passing it through a length 5 moving-average filter.  The 
differences between the nonlinear and linearized versions of Burgers equation for the random 
input are small.  However, where there are notable differences the identified bilinear equation 
response is in good to excellent agreement with the nonlinear response.  There is a maximum 
difference of 14% between the linear and the nonlinear responses, but a maximum difference of 
about 3% between the nonlinear and identified bilinear responses in this case.  The nonlinear and 
first- plus second-order convolution responses for this random input are compared in figure 29.  
These results are also in good to excellent overall agreement, with the maximum difference in 
the responses being 12%.  
 
 The linear, nonlinear, and identified bilinear equation responses to the composite input 
depicted in figure 30 are compared in figure 31.  The input signal in this case consisted of up-
then-down ramps (breaking at time index 100), with a 0.5-amplitude, 5-Hz sine wave added to 
the down ramp and a smoothed 0.2-amplitude random signal to represent noise added to both the 
up and down ramps.  The major differences in the responses occur in the interval straddling the 
point where the slope of the ramp input changes sign.  There is a maximum difference of 37% 
between the linear and the nonlinear responses, but a maximum difference of about 14% between 
the nonlinear and identified bilinear responses.  Again, the first- plus second-order convolution 
responses were also computed for this input and compared to the nonlinear response to provide 
an alternative solution to the problem.  These results are included in figure 31.  The maximum 
difference in the convolution versus nonlinear responses is 13%.   
 
Example 4: Continuous Stirred Tank Reactor  

 
 The Van de Vusse Continuous Stirred Tank Reactor (CSTR) used in the chemical 
processing industry is often used as a benchmark problem by researchers for evaluating 
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nonlinear process control algorithms.  Reference 28 develops the nonlinear equations for a SISO 
process of that reactor and employs the bilinear approximation                           
 
                                                 { } [ ]{ } [ ]{ } [ ]X A X N X u B u= + +  
                                                                                                                                                     (49) 
                                                         { } [ ]{ } [ ]y C X D u= +   
                                      
that results from the application of Carleman linearization (ref. 24) to those nonlinear equations.  
The state vector specified for the linearization process contained the customary states, x1 and x2, 
and the second-order products of the states, x1x2, x1

2, x2
2, arranged in the form   

   

                                                 { } 2 2
1 2 1 2 1 2

T
X x x x x x x⎡ ⎤= ⎣ ⎦                                            (50) 

 
The matrices appearing in equation 49 are given by 

 
 

                                                            (51) 

144.3 0 0 10 0
50 134.3 0 0 0
0 0 278.6 50 0
0 0 0 288.6 0
0 0 100 0 286.6

A

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

                                        

1 0 0 0 0
0 1 0 0 0

1.12 7 2 0 0
14 0 0 2 0
0 2.24 0 0

N

−⎡ ⎤
⎢ ⎥−⎢
⎢= − −
⎢ ⎥−⎢ ⎥
⎢ ⎥2

⎥
⎥

− −⎣ ⎦

                                              (52) 

  
 

                                                   

[ ]

[

[ ]

7 1.12 0 0 0

0 1 0 0 0

0

TB

C

D

= −

=

=

]                                                   (53) 

 
from which it follows that n = 5, m = 1, and r = 1. 
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 The state variables x1 and x2 are perturbation variables for the concentrations of the two 
components, designated A and B, in the mixture, and u is the inlet flow rate of component A.  
Note that y = x2, i.e., the concentration of component B.  Pertinent parameters for the numerical 
calculations are: N = 250, ∆t = 0.001 hr, ∆T = 0.001 hr, and ncomp = 50.   
 
 The identified continuous model is 
 

                                           
4.4547e-001 -2.3095e+002
8.4449e+001 -2.7905e+002cidA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

                                           
4.3009e-001
3.5396e+001cidB ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

          
                                                                                       (54) [-2.3468e-002 -3.1357e-002]cidC =
 
                                           [0]cidD =
 

                                           
-1.0093e-000 3.3286e-001
4.7480e-001 -1.1441e-000cidN ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
The continuous bilinear equations represented by these matrices were discretized using equations 
31-33.  Because the Adid and Bdid matrices of this discrete model change at each time point, there 
is no single set of discrete matrices that define this model over time. 
 
 Figures 32 and 33 present the first- and second-order kernels, respectively.  Individual step 
changes of +15 and –20 in the inlet flow rate were imposed separately as in reference 28 to 
verify the response time histories presented there using linear, nonlinear, and first- plus second-
order Volterra kernel models.  Subsequently, additional simulations were conducted.  For 
example, figure 34 summarizes the time variations in the concentration of component B using 
five different system models for the case in which a step input of +15 is imposed first and then 
changed to –20 at time index 100.  The overall agreement of the identified bilinear response with 
both the nonlinear and original bilinear responses is excellent, with a maximum difference of less 
than 2%, while the maximum difference between the linear and the nonlinear responses is 57%.  
The maximum difference in the nonlinear versus convolution responses is 19%.     
 
 
Example 5: Nonlinear Difference Equation 
 
 The fifth and final SISO example uses the nonlinear difference equation 
 

                                                    (55) 2 20.05 ( 1) 0.05 ( 1)
( ) 0.8 ( 1) 0.2 ( 1) 0.1 ( 1) ( 1)

k u k
y k y k u k y k u k

y − − −

= − + − − −
+

−

 35 
 



 

 
This equation is the same bilinear difference equation used in an example in reference 28 but 
augmented with the nonlinear terms involving u2 and y2.  The present method was first applied to 
this equation without the additional terms to verify published results to an up-then-down stair-
case-type input extending over 110 discrete time points.  Because the equation is already in 
discrete form, ∆t = ∆k =1.  The pertinent parameters for the numerical calculations are: N = 250, 
∆t = 1 sec, ∆T = 1 sec, and ncomp = 10.   
 
 The identified continuous bilinear model is  
 
                                                            [-2.1747e-001]cidA =   
          
                                                            [-6.6079e-001]cidB =  
 
                                                            [-3.3681e-001]cidC =                                                   (56a) 
 
                                                            [0]cidD =  
 
                                                            [-1.6199e-001]cidN =  
 
The continuous bilinear equation represented by these matrices was discretized according to the 
first-order Euler method of equations 25-26 yielding the discrete bilinear model 
 
 
                                                            [7.8253e-001]didA =     
        
                                                             [-6.6079e-001]didB =  
 
                                                             [-3.3681e-001]didC =                                                  (56b)                 
 
                                                             [0]didD =  
 
                                                             [-1.6199e-001]didN =                                                                                  
 
 
 Illustrative results for this example are presented in figures 35-40.  The first- and second-
order kernels that were computed using the nonlinear difference equation are presented in figures 
35 and 36, respectively.  The responses of the linear, nonlinear, and identified bilinear equations 
to the step/pulse inputs shown in figure 37 are presented in figure 38.  Overall agreement 
between the nonlinear and identified bilinear responses for these inputs is fair to good over the 
time range shown.  Away from the spikes and dips in figure 38, there is a maximum difference of 
about 27% between the linear and the nonlinear responses, but a maximum difference of about 
only 1% between the nonlinear and the identified bilinear responses.  Just prior to the sharp 
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drops at time index 100, the maximum differences are 58% and 7%, respectively.  A more 
complicated excitation consisting of a piece-wise combination of staircase, step, ramp, sawtooth, 
and sinusoidal inputs and depicted in figure 39 was also applied to the system.  The first 80 time 
points of this input are identical to the leading portion of the staircase input used in reference 28.  
The resulting linear, nonlinear, and identified bilinear equation responses and first- plus second-
order convolution responses for this input are compared in figure 40.  Note that the identified 
bilinear response tracks the nuances of the nonlinear response rather well over the entire time 
interval shown, with a maximum difference of 9%, while the maximum difference between the 
convolution and nonlinear responses is about 4%.  Note that the maximum difference between 
the liner and the nonlinear responses is 58%.   
 
 Viewed as a whole, the results presented above to illustrate the application of the method 
of reference 13 as extended in this report to SISO discrete problems works well, at least for the 
set of nonlinear and bilinear test cases investigated.  In particular, even though the identified 
bilinear models were of small order (some as low as one), the responses computed with these 
models tracked the nuances of the responses obtained from the nonlinear or bilinear governing 
equations surprisingly well. 

 
Bilinear System Identification Using MISO Equations 

 
 The equations of motion in the illustrative example of Bruni, di Pillo, and Koch (ref. 13) 
were used initially as-is by the present authors to obtain the results for the various multi-input 
cases to be presented below.  These equations and their corresponding first- and second-order 
kernels are shown in equations 14 and 15 and figures 6 and 7, respectively.  However, it was 
found that most of the computed original-versus-identified bilinear time histories, although in 
good agreement with each other, were not too much different from the computed linear time 
histories, indicating that the nonlinearities associated with the N1 and N2 terms in those equations 
were relatively weak.  To better illustrate the identification capabilities of the present method for 
systems exhibiting stronger nonlinearities, it was decided to increase those matrices by some 
factor.  Numerical studies indicated that a factor of 4 provided sufficient amplification to 
increase the nonlinear effects.  The sign of N2 was also changed in anticipation of providing 
more interesting behavior.  The resulting modified version of the original continuous model of 
reference 13 with the changes underlined is:                                                
 

              

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]1 2

1 0 1 0
; ; 0 1 ; 0

1 2 0 1

0 0 1 1
4 ; 4 ;

1 1 0 0

c c c c

c c

A B C D

N N

−⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

0 ;

       (57) 

 
The first- and second-order kernels of the modified bilinear equation are presented in figures 41 
and 42, respectively.  Comparing these kernels to the comparable kernels shown in figures 4 and 
5 for the original (unmodified) equation, it should be noted that the first-order kernels are 
unchanged (as expected) but that the second-order kernels are different (also as expected).   

 37 
 



 

 
 Comparisons of the linear, modified original bilinear, and identified bilinear equation 
responses for each of ten input cases are presented below.  Pertinent parameters for the numerical 
calculations are: N = 300, ∆t = 0.01 sec, ∆T = 0.1 sec, and ncomp = 30.     
 
 The identified continuous bilinear model is:  
 

                                         
-1.4390e+000 -1.1179e+000
-2.2031e-001 -1.5610e+000cidA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

                                         
-7.3142e-001 -1.6975e+001
1.5481e+001 -8.5276e+000cidB ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
                                                                                       (58)                         [-5.7526e-002 -2.7534e-003]cidC =
 
                                         [0     0]cidD =
 

                                        1

6.2954e+000 -4.3427e+000
2.7896e+000 -1.9243e+000cidN ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

                                        2

-2.4840e-001 1.7038e-001
5.8616e+000 -3.9614e+000cidN ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
The modified original (57) and identified (58) continuous bilinear equations were discretized in 
accordance with equations 31-33, which form a new model at each time step.  The resulting 
equations were then solved numerically for each of several different inputs and their response 
time histories compared.  Ten sets of results, corresponding to the 10 different loading 
conditions, are presented below.  Zero initial conditions were assumed for all the time history 
calculations.  The modified original bilinear equation (eq. 57) is referred to as the “original 
bilinear equation” rather than as the “original bilinear equation as modified” for convenience of 
discussion below.    
 
 A comparison of the linear, original bilinear, and identified bilinear equation responses to 
the u1 and u2 step inputs shown in figure 43 is presented in figure 44.  Note that the u1 input is 
imposed at time zero (time index 0) but the u2 input is delayed until time index 100.  The 
responses obtained from the original bilinear and identified bilinear equations are in excellent 
agreement over the time interval shown, with a maximum difference of less than 1.5%.   
 
 A comparison of the linear, original bilinear, and identified bilinear equation responses to 
the u1 and u2 sine wave inputs of figure 45 is given in figure 46.  The frequencies and amplitudes 
of u1 and u2 are 5 Hz and 2 Hz and 1 and 0.5, respectively.  The u2 input is delayed and not 
imposed until time index 50.  Again, there is excellent agreement between the original and 
identified bilinear responses, with the differences being essentially 0% over the time interval.  
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The maximum difference between the linear and original bilinear responses is 13% for time 
indices greater than 75 but reaches values as high as 200% for time indices below 50.   
 
 A similar comparison of responses but this time to the pattern of sinusoidal inputs shown 
in figure 47 is given in figure 48.  The inputs in this case differ from those in figure 45 only in 
that the frequencies have been interchanged.  There is excellent agreement between the original 
and identified bilinear responses over the entire time interval presented, with a maximum 
difference of only 4%.  However, there is a maximum difference of 150% between the linear and 
the original bilinear responses.   
  
 A comparison of the linear, original bilinear, and identified bilinear equation responses to 
the random inputs of figure 49 is presented in figure 50.  The random signals used in this case 
were generated using the MATLAB function randn.m and then passed through a length 5 
moving average filter using the MATLAB function filtfilt.m.  Note that the imposition of the 
filtered u2 input is delayed until time index 45.  The undulations of the identified bilinear 
responses are in excellent agreement with those of the original bilinear equation and show a 
maximum difference of only 3%.  In this case, the maximum difference between the linear and 
the original bilinear responses is 62%.   
 
 Response time histories obtained from the linear, original bilinear, and identified bilinear 
equations for the ramp inputs depicted in figure 51 are presented in figure 52.  Input u2 was 
delayed until time index 50.  Note that there is a maximum difference of 105% between the 
linear and the original bilinear responses, but a maximum difference of only 9% between the 
original bilinear and identified bilinear responses in this case.  
 
 Responses of the linear, original bilinear, and identified bilinear equations to a sequence of 
u1 and u2 pulses varying in magnitude, duration, and sign and distributed as depicted in figure 53 
are compared in figure 54. The overall agreement between the original bilinear and identified 
bilinear responses is good, with the maximum difference being 5%.  There is a maximum 
difference of 153% between the linear and the original bilinear responses.                                              
 
 Responses of the linear, original bilinear, and identified bilinear equations to a 5-Hz sine 
wave on u1 and a sharp pulse applied at time index 100 on u2 as shown in figure 55 are presented 
in figure 56.  Again, there is excellent agreement between the original and identified bilinear 
responses, with a maximum difference of about 5%.  In this case, there is a maximum difference 
of 93% between the linear and the original bilinear responses. 
 
 Responses of the linear, original bilinear, and identified bilinear equations to a 2-Hz sine 
wave on u1 and a 3-term pulse train on u2 as shown in figure 57 are compared in figure 58.  The 
response predicted by the identified bilinear equation is in excellent agreement with the behavior 
obtained from the original bilinear equation and show a maximum difference of only 3%.  The 
maximum difference between the linear and the original bilinear responses is 150%. 
 
 Responses of the linear, original bilinear, and identified bilinear equations to the noisy step 
inputs of figure 59 are presented in figure 60.  The u1 and u2 steps have amplitudes of +0.1 and    
−0.1, respectively and noise levels of 0.2 and 0.1, respectively.  A drift of 0.002 per time step is 
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also present in the u2 input signal.  The overall agreement between the predicted responses 
obtained using the original and identified bilinear equations is excellent, with the differences 
being essentially zero over the entire time interval.  There is a maximum difference of 15% 
between the linear and the original bilinear responses.  
 
 The responses obtained for the same set of noisy step inputs depicted in figure 59 but with 
no drift in u2 (figure 61) are compared in figure 62.  The agreement between the original and 
identified bilinear responses is reasonably good in this case, with the major differences occurring 
at the upper end of the time range with a maximum difference of about 15%.  There is a 
maximum difference of 200% between the responses from the linear and original bilinear 
equations. 
 
 Responses of the linear, original bilinear, and identified bilinear equations to the u1 and u2 
sawtooth/ramp inputs of figure 63 are presented in figure 64.  The agreement between the 
responses of the original and identified bilinear equations in this case is good to excellent 
depending on where the comparison is made, with the maximum difference being 18%.  The 
maximum difference is 155% between the linear and the original bilinear responses.  
 
 Responses of the linear, original bilinear, and identified bilinear equations to a 2-Hz sine 
wave on u1 and a series of up and down ramps on u2 as depicted in figure 65 are given in figure 
66.  There is excellent overall agreement between the responses of the original and identified 
bilinear equations over the time interval shown, with the maximum difference being less than 
3%.  However, there is a maximum difference of 100% between the linear and original bilinear 
responses.       
 
 Taken as a whole, the results presented above to illustrate the application of the method of 
reference 13 as extended to discrete problems in this report works well, at least for the set of 
MISO (two input/single output) test cases investigated.  Particularly noteworthy is the fact that, 
in spite of the small order of the identified bilinear model, the responses computed with the 
identified model predicted the nuances of the responses computed using the original bilinear 
model quite well.     
 

 
Resultant Computational Procedure    

 
 The results of the illustrative SISO and MISO examples presented above show that the 
extension of the method of reference 13 proposed herein provides a practical computational 
procedure for determining a useful discrete bilinear state-space representation of a nonlinear 
system.  A step-by-step outline of the process is given in figure 67, which shows the sequence of 
tasks associated with carrying out the necessary computations.  Supplementary notes follow, 
keyed by number to the individual tasks:    
 
1. Compute the first- and second-order discrete Volterra kernels:  Use the pulse-loading 
method described in Appendices B and C to compute the first- and second-order discrete kernels 
for the nonlinear system of interest.  For this purpose, it is assumed that the continuous 
differential equations describing the nonlinear system have been discretized using established 
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finite-difference modeling techniques appropriate to the problem and equations at hand.  See 
equations 43-47 for an example of such a discretization.  The second-order kernels so-computed 
are symmetric. 
 
2. Identify the discrete state-space matrices Ad,Bd,Cd,Dd:  Identify the discrete state-space 
matrices Ad,Bd,Cd,Dd  using any procedure for realization of linear time-invariant systems applied 
to the first-order kernels computed in step 1.  The procedure used here is ERA (ref. 30). 
 
3. Convert the discrete state-space matrices Ad,Bd,Cd,Dd to their continuous counterparts:  Use 
the d2c.m script of MATLAB to convert the discrete (Ad, Bd) from step 2 to their continuous 
counterparts (Ac, Bc).  It should be noted that (Cc, Dc) = (Cd, Dd ) so no formal conversion of (Cd, 
Dd ) to (Cc, Dc) is required.  
 
4. Convert the discrete symmetric second-order kernels to their continuous triangular 
counterparts:  Following equation 24b, this conversion is made by multiplying the discrete 
second-order symmetric kernels computed in step 1 by 2/(∆t)2 and puts them into the form 
required by the method of reference 13. 

 
              The next three steps make direct use of three key steps  
               in the procedure of reference 13.  
 

5. Compute the subsidiary matrices G and H:  Use the continuous matrices Ac,Bc,Cc from step 
3 in equation 9 to compute the matrices G and H.  The lower limit of integration t1 is 0.  The 
upper limit of integration t2 is set to the same value used in step 6 below. 
 
6. Compute the subsidiary matrices Kj:  Use the continuous matrices Ac,Bc,Cc from step 3 and 
the continuous second-order kernels from step 4 in equation 11 to compute the matrices Kj.  As 
discussed earlier, the components of the second-order kernels are shifted to the origin (time 
zero/time index 0) before numerically evaluating the double integrals.  The lower limit of 
integration t1 is then 0 for each component while the upper limit of integration t2 is chosen large 
enough to include all the regions of influence of the second-order kernels.   

 
7. Compute the continuous bilinear state-space matrices Ncj:  Use the matrices G, H, and Kj 
from steps 5 and 6 in equation 12 to compute the bilinear state-space matrices Ncj. 
 
       At this point in the procedure, the matrices A, B, C, D, Nj of a  
                        continuous bilinear state-space representation of a nonlinear 
       system have been identified.  
 
8. Discretize the resulting identified continuous bilinear state-space equations as required: 
The identified continuous bilinear state-space equations must be discretized to obtain the desired 
discrete bilinear state-space representation of the original nonlinear equations.  Finite-difference-
based numerical modeling techniques as discussed in this report are suitable for this purpose.  
Equations 25-33 are illustrative of the form such discretized equations take. 
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Concluding Remarks     
 
 A practical computational procedure for calculating the state-space matrices corresponding 
to discrete-time bilinear representations of nonlinear systems has been presented.  A key feature 
of the method is the use of discrete first- and second-order Volterra kernels to characterize the 
system.  The present method is based on an innovative extension of the formulation for a 
continuous-time bilinear system identification procedure published in a 1971 paper by Bruni, di 
Pillo, and Koch.  The analytical and computational considerations that underlie their method and 
its extension herein to the more general problem of identifying bilinear state-space 
representations of discrete nonlinear systems were described, pertinent numerical aspects 
associated with the process were discussed, and illustrative results from the application of the 
new procedure to several nonlinear systems from the literature were presented.  Based on the 
results obtained from these exploratory numerical studies, the proposed procedure is a viable 
approach for calculating discrete-time bilinear state-space representations for approximating 
nonlinear systems and warrants further investigation.  To this end, additional applications of the 
method are planned, with emphasis to be given to computational fluid dynamics-based 
aeroelastic problems. 
 
 



 

Appendix A 
 

Formulas for Computing First- and Second-Order Volterra Kernels Using 
Continuous-Time Bilinear State-Space Matrices 

 
 Reference 13 presents a general equation (in the guise of eq. 2.21 in that paper) for 
computing the continuous Volterra kernels appearing in equation 6 of the present report using the 
state-space matrices that define the continuous bilinear model of equation 5.  The specific 
expressions for computing the first- and second-order kernels are given below. 
 

First-Order Kernels 
 
                                                                       (A1) (1) (2) ( )

1 1 1 1( ) ( ) ( ) ( ) cA tr
cW t w t w t w t C e B⎡= ⎣ c⎤ =⎦

 
 

Second-Order Kernels 
 
 Expressions for the second-order kernels can be written in several forms.  For example, 
defining bj as the columns of the matrix Bc, i.e., Bc = [b1  b2  b3 …  br], the kernels may be 
expressed analytically as 
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)

These kernels may also be expressed more compactly as  
 

                                               (A2b) 
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The kernels w2 computed using equations A2 are triangular kernels as those expressions follow 
from a general equation that was derived in reference 13 assuming that t2 ≥ t1 ≥ 0.  The unit step 
functions δ-1( ) appearing in these equations are usually omitted and assumed to be part of the 
kernels for convenience of notation. 
 
 Equations A1 and A2 can be used to compute analytical expressions for the first- and 
second-order Volterra kernels for a continuous bilinear system if the state-space matrices of the 
continuous bilinear equation of the system are known.  This is how the kernels used in the 
example of reference 13 were obtained.  The authors of that reference studied the relationships 
between the mathematical models given by equations 5 and 6 and developed a procedure that 
enables direct calculation of the state-space matrices for continuous bilinear systems given that 
system’s first- and second-order kernels.  In the present work, it is assumed that the underlying 
system is nonlinear rather than bilinear and the objective is to find a discrete bilinear 
representation of that nonlinear system.       



 

Appendix B 
 

Schematic Depiction of Pulse Loading Patterns for Calculating First- and 
Second-Order Volterra Kernels for Discrete Systems with Two Inputs 

 
 The pulse loading patterns that were imposed on a discrete system to compute its first- and 
second-order kernels are easily depicted for the case of two inputs.  Because a pictorial 
representation of this case was used by the authors to help define a generalization to the case of 
more than two inputs (Appendix C) that representation is presented here for completeness.     
 
 The first- and second-order kernels were calculated using two different sets of subsidiary 
pulse responses which were computed first.  Two subsidiary responses comprised the set used to 
calculate the first-order kernels, while three subsidiary responses comprised the set used to 
calculate the second-order kernels.  These are described below.  
 
 

First-Order Kernels 
 

 Following the procedure described in references 1 and 3, the first-order kernels and 

are each calculated using two subsidiary pulse responses which are obtained by separately 
imposing the pulse loadings depicted in figure B1 first to input u1 and then to input u2.  The first 
subsidiary response, y1, is simply the response of the nonlinear system to a unit-amplitude 
discrete pulse

(1)
1k

(2)
1k

0δ imposed at k = 0 (t = 0).  The other subsidiary response, y11, is the response of 
the system to two unit-amplitude pulses 2 0δ  imposed at k = 0 (t = 0).  Two such subsidiary 
responses are computed for each input of interest (two in this particular case).  The resulting 
pairs of subsidiary responses are then combined according to      

 
                                                                                      (B1) ( ) ( ) ( )

1 1 112 0.5y ;         =1,2p p pk y p= −
 
to obtain the first-order kernels.  The calculation for the first-order kernel is done in this way so 
that reflects the linear portion of the nonlinear response (i.e., the linearized solution about a 
nonlinear steady-state condition rather than the purely linear response (i.e., linear response 
computed using linear equations).  If is calculated this way, it will include some of the effect 
of any steady-state amplitude dependence that is present in the system. 

( )
1

jk

( )
1

jk

 
 The schematic depictions of the pulse loading patterns imposed for computing the 
subsidiary responses y1 and y11 used to calculate the two first-order kernels for this case can be 
summarized in algebraic-like rules as follows: 
 
Pulses used for computing subsidiary responses for kernel k1

(1) : 
 
 y1 ~  response to single unit pulse applied to input u1 at t = 0 (k = 0)      
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 y11 ~ response to two unit pulses applied simultaneously to input u1 at t = 0 (k = 0)     
 
Pulses used for computing subsidiary responses for kernel k1

(2) : 
 
 y1 ~  response to single unit pulse applied to input u2 at t = 0 (k = 0)      
                                                                                                                                                     
 y11 ~ response to two unit pulses applied simultaneously to input u2 at t = 0 (k = 0)    

 
 

Second-Order Kernels  
 

 The second-order kernels  are calculated using three subsidiary pulse responses, 
which are computed differently depending on whether the kernel is on the diagonal (p = q) or off 
the diagonal (p ≠ q).  There are ri = 22 = 4 second-order kernels for this case.  Because each of 
the second-order kernels has ncomp components reflecting ncomp different time lags between 
the imposed pulses, each of the three subsidiary responses has ncomp components.  The pulse-
loading patterns needed for computing the subsidiary responses used to calculate the on-diagonal 
kernels is described in references 1 and 3.  Loading patterns for computing the subsidiary 
responses for calculating the off-diagonal kernels were not available and had to be derived for 
this report.     

( , )
2

p qk

 
Diagonal Kernels ( ): (1,1) (2,2)

2 2,k k
 Following the procedure described in references 1 and 3, the subsidiary pulse responses 
needed for calculating the diagonal kernels and  are obtained by separately imposing 
the pulse loadings depicted in figure B2, first to input u1 and then to input u2.  Note that the time 
increment ΔT for varying the time lag T is depicted as ΔT = 4∆t in figure B2.  This choice was 
arbitrary and done solely for pictorial convenience.  In practice, ΔT is set according to ΔT = j ∆t, 
where j is an integer ≥ 1 chosen consistent with the guidelines discussed in the main body of this 
report for selecting values for ∆t and ΔT.  The first set of responses, y1, is simply the response of 
the system to a unit-amplitude pulse applied at k = 0 (t = 0) as shown in figure B2a and used 
ncomp times to complete the first set.  The second set, y2, follows from imposing the pattern of 
(time-lagged) single unit pulses shown in figure B2b.  It should be noted that, in practice, this set 
of responses does not actually have to be computed because for time-invariant systems as 
assumed herein they follow directly from the y1 time history by simply shifting the y1 curves in 
time by the appropriate amounts.  The third set of responses, y12, follows from imposing the 
pattern of time-lagged double unit pulses given in figure B2c.  Note that the first component of 
this set is computed with a double unit pulse imposed at k = 0 (t = 0).  Three such sets are 
computed for each input of interest (two in this case).  The resulting sets of subsidiary responses 
are then combined (component-by-component) according to   

(1,1)
2k (2,2)

2k

 
                              ( )( , ) ( , ) ( , ) ( , )

2 12 1 20.5   ;          =1, 2p p p p p p p pk y y y p= − −                                   (B2) 

 
to obtain the second-order diagonal kernels.  
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 Schematic depictions of the pulse loading patterns imposed for computing the subsidiary 
responses y1, y2, and y12 used to calculate the two on-diagonal kernels for this case can be 
summarized in algebraic-like rules as follows: 
 
Pulses used for computing subsidiary responses for kernel k2

(1,1) : 
 
y1 ~ unit pulse applied to input u1 at t = 0 (k = 0); input u2 = 0 
 
y2 ~ unit pulse applied to input u1 at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T ; input u2 = 0 
 
y12 ~ two unit pulses applied to input u1: one at t = 0 and the other at t = 0, ∆T, 2 ∆T, …, (ncomp 
-1) ∆T; input u2 = 0 
 
 
Pulses used for computing subsidiary responses for kernel k2

(2,2) : 
 
y1 ~ unit pulse applied to input u2 at t = 0 (k = 0); input u1 = 0 
 
y2 ~ unit pulse applied to input u2 at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T ; input u1 = 0 
 
y12 ~ two unit pulses applied to input u2: one at t = 0 and the other at t = 0, ∆T, 2 ∆T, …, (ncomp 
-1) ∆T; input u1 = 0 
 
Off-Diagonal Kernels ( ):  (2,1) (1,2)

2 2,k k
 The off-diagonal second-order kernel is calculated using the three subsidiary pulse 
responses obtained from imposing the pulse loadings depicted in figure B3.  Because the pulses 
are imposed only at integer multiples of ΔT when calculating the second-order kernels, only the 
ΔT time increments are indicated in figure B3.  The first of these, y1, is the response of the 
system to a unit-amplitude pulse applied to input u1 at k = 0 (t = 0).  The same response curve is 
used ncomp times to complete the first set.  The second set, y2, is obtained by imposing the pulse 
pattern shown in figure B3b to input u2.  The third set, y12, follows from imposing the pattern of 
pulses given in figure B3c to inputs u1 and u2 simultaneously.  The resulting sets of subsidiary 
responses are then combined (component-by-component) according to  

(2,1)
2k

 
                                                                                           (B3) (2,1) (2,1) (2,1) (2,1)

2 12 10.5 (y  y  y ) k = − − 2

 
to obtain the second-order kernel .   (2,1)

2k
 
 The off-diagonal second-order kernel is calculated using the three subsidiary pulse 
responses obtained from imposing the pulse loadings depicted in figure B4.  Again, because the 
pulses are imposed only at integer multiples of ΔT, only the ΔT time increments are shown in 
figure B4.  The first of these, y1, is the response of the system to a unit-amplitude pulse applied 
to input u2 at k = 0 (t = 0).  The same response curve is used ncomp times to complete the first 
set.  The second set of responses, y2, is obtained by imposing the pulse loading pattern given in 

(1,2)
2k
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figure B4b at input u1.  The third set, y12, follows from imposing the pattern of pulses given in 
figure B4c to inputs u1 and u2 simultaneously.  The resulting sets of subsidiary responses are then 
combined (component-by-component) according to 
 
                                                                                            (B4) (1,2) (1,2) (1,2) (1,2)

2 12 10.5 (y  y  y )k = − − 2

 
to obtain the second-order kernel .  (1,2)

2k
 
 While the pulse loadings used for computing the subsidiary responses needed for 
calculating the off-diagonal kernels are different (compare figures B3 and B4), it should be noted 
that not all subsidiary responses mentioned above actually need to be computed because the 
collection of all pulse loadings (and hence subsidiary responses) is not unique.  For example, the 
following identities are present for the case of two inputs: y1 of k2

(1,1) = y1 of k1
(1) = y1 of k2

(2,1), y1 
of k2

(2,2) = y1 of k1
(2) = y1 of k2

(1,2), y2 of k2
(2,2) = y2 of k2

(2,1), and y2 of k2
(1,1) = y2 of k2

(1,2).  Thus, a 
reduction in computational effort can be realized if advantage is taken of such relationships. 
 
 The schematic depictions of the pulse loading patterns imposed for computing the 
subsidiary responses y1, y2, and y12 used to calculate the two off-diagonal kernels for this case 
can be summarized in algebraic-like rules as follows: 
 
Pulses used for computing subsidiary responses used for calculating kernel k2

(1,2) : 
 
y1 ~ unit pulse applied to input u2 at t = 0 (k = 0); input u1 = 0  
 
y2 ~ unit pulse applied to input u1 at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T ; input u2 = 0 
 
y12 ~ unit pulses applied to input u1 at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T and input u2 at t = 0 
 
Pulses used for computing subsidiary responses used for calculating kernel k2

(2,1) : 
 
y1 ~ unit pulse applied to input u1 at t = 0 (k = 0); input u2 = 0  
 
y2 ~ unit pulse applied to input u2 at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T ; input u1 = 0 
 
y12 ~ unit pulses applied to input u2 at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T and input u1 at t = 0 
 
 Careful inspection of these algebraic rules reveals a rule for determining which off-
diagonal kernel is being calculated given values for the indices p and q.  The rule depends on 
which pulse input is nonzero when computing the subsidiary responses y1 and y2.  Specifically, 
whichever input is nonzero when computing y1 sets the second index (q) and whichever input is 
nonzero when computing y2 sets the first index (p). 
 
A Comment on Indexing for the Off-Diagonal Kernels: 
 
 While the pulse loading patterns for computing the subsidiary responses used for 
calculating the diagonal kernels are well established (refs. 1, 3), the loading patterns needed for 
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computing subsidiary responses for calculating off-diagonal kernels had to be defined.  Pulse 
loading patterns for computing subsidiary pulse responses for calculating what were deemed to 
be the k2

(2,1) and k2
(1,2) kernels were devised.  The kernels that were initially calculated for the 

example in reference 13 using these kernels were the reverse of the w2
(1,2) and w2

(2,1) kernels 
given in reference 13.  This indicated that the index logic assumed to define the pulse loading 
patterns was reversed and needed adjustment.  This adjustment led to the pulse loading patterns 
shown in figures B3 and B4 and to the rule noted above for determining which off-diagonal 
kernel is being computed.  
     
 
 
 
 
 
 
 
 

 

 
(a) Single unit pulse used to compute y1 

 
 
 
 

   
 

(b) Double unit pulse used to compute y11 
 
 

Figure B1.- Unit-amplitude pulses imposed separately at inputs u1 and u2 to compute subsidiary 
responses used for calculating first-order kernels and .  (1)

1k (2)
1k
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(a) Single unit pulse used to compute y1 

 
 

(b) Sequence of single unit pulses used to compute y2 
 

 
 

(c) Sequence of double unit pulses used to compute y12 
 

Figure B2.- Unit-amplitude pulses imposed separately at inputs u1 and u2 to compute subsidiary 
responses used for calculating second-order diagonal kernels and .  (1,1)

2k (2,2)
2k
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(a) Single unit pulse used to compute y1 
 

  
 

(b) Sequence of single unit pulses used to compute y2 
 

 
 

(c) Sequence of double unit pulses used to compute y12 
 

Figure B3.- Unit-amplitude pulses imposed simultaneously at inputs u1 and u2 to compute 
subsidiary responses used for calculating second-order diagonal kernel .                                        (2,1)

2k
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(a) Single unit pulse used to compute y1 

  
 

(b) Sequence of single unit pulses used to compute y2 
 

  
 

(c) Sequence of double unit pulses used to compute y1 
 

Figure B4.- Unit-amplitude pulses imposed simultaneously at inputs u1 and u2 to compute 
subsidiary responses used for calculating second-order diagonal kernel .  (1,2)

2k
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Appendix C 
 

Pulse Loading Patterns for Calculating First- and Second-Order Volterra 
Kernels for Discrete Systems with an Arbitrary Number of Inputs 

 
 A schematic depiction of the pulse loading patterns that can be employed for calculating 
Volterra kernels for discrete systems with more than two inputs along the lines presented in 
Appendix B for the case of two inputs would be rather unwieldy.  For this reason, this appendix 
provides no schematic depiction of this case but simply provides a collection of algebraic-like 
rules for imposing the pulse loading patterns employed for computing the subsidiary responses 
needed for calculating kernels for the general MIMO case.  
 

First-Order Kernels 
 

 The first-order kernels for this case are calculated in exactly the same way as in 
Appendix B, except that there are additional inputs (and hence kernels) to deal with when r is 
greater than 2.  There are r first-order kernels, where each kernel is an m×1 vector.  For 
convenience, these kernels can be collected into a matrix according to: 

( )
1

jk

1Κ
 
                                  (1) (2) ( )

1 1 1 1
rk k k⎡ ⎤= ⎣ ⎦Κ                                                    (C1) 

 
 The kernels (  are calculated using two subsidiary pulse responses y1

(j) and y11
(j) that are 

computed first using the following pulse loading patterns: 

)
1

jk

 
        y1

(j) ~  response to single unit pulse 0δ applied to input uj at t = 0 (k = 0);   j = 1, 2, …., r    
                                                                                                                                                    (C2) 
        y11

(j) ~ response to two unit pulses 2 0δ applied simultaneously to input uj at t = 0 (k = 0);   
                    j = 1, 2, …., r 
 
The time histories y1 and y11 are calculated for each of the r inputs in turn with all of the other 
inputs set to zero.  The kernels  are then calculated using the expression (refs. 1, 3) ( )

1
jk

 
                                                                                     (C3) ( ) ( ) ( )

1 1 112 0.5 ; 1,2,...,p p pk y y p= − = r
 
 The calculation of the first-order kernels is done in this way so that reflects the linear 
portion of the nonlinear response (i.e., linearized solution about a nonlinear steady-state 
condition rather than the purely linear response (i.e., linear response computed using linear 
equations).  If is calculated this way, it will include some of the effect of any steady-state 
amplitude dependence that is present in the system. 

( )
1

jk

( )
1

jk
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Second-Order Kernels 
 
 The second-order Volterra kernels  are calculated using three subsidiary pulse 
responses, which are computed differently depending on whether the kernel is on the diagonal 
(p=q) or off the diagonal (p≠q).  The second-order kernels for the case of r inputs can be 
collected into matrices according to: 

( , )
2

p qk

( )
2

jΚ
 

                                                   

(1) (1,1) (1,2) (1, )
2 2 2 2

(2) (2,1) (2,2) (2, )
2 2 2 2

( ) ( ,1) ( ,2) ( , )
2 2 2 2

r

r

r r r r r

k k k

k k k

k k k

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

Κ

Κ

Κ

                                                   (C4) 

 
 Each of the second-order kernels is composed of a finite number (ncomp) of m×1 vector 
components rather than a single vector as are the first-order kernels.  Each of these components 
is computed using subsidiary pulse responses y1

(p,q), y2
(p,q),  and y12

(p,q) that are calculated using 
pulse loading patterns to be described below.  The pulse loading patterns that are imposed to 
compute the subsidiary responses differ depending on whether a diagonal (p = q) or an off-
diagonal (p ≠ q) kernel is being calculated.  However, all the second-order kernels are computed 
(component-by-component) using the same general equation (refs. 1, 3):  
 
                                                         (
 

( , ) ( , ) ( , ) ( , )
2 12 1 20.5 (y  y  y ) ;      , =1, 2, ...,p q p q p q p qk p= − − q r C5) 

here ar second-order kernels.  Each kernel is defined by ncomp m×1 vector components.  

The specific pulse loadings that are imposed to compute the subsidiary pulse responses 

agonal kernels ( ):  

onal kernels for this case are calculated in exactly the same 
way a

T e 2ir r=
Each of the subsidiary responses used to calculate the components is an m×1 vector.  Also, by 
virtue of assuming that t1 ≤ t2 while computing the components defining the kernels, the kernels 
computed by the present procedure are (inherently) symmetric. 
 
 
used to calculate the second-order diagonal and off-diagonal kernels for the general MIMO case 
are described below.  The reader may find it helpful to refer to the schematic depiction of the 
simpler case of two inputs presented in Appendix B while considering this more general case. 
   

( , )
2

p pk
The second-order diag

Di
( , )
2

p pk
s in Appendix B, except that there are additional inputs (and hence kernels) to deal with 

when r is greater than 2.  Because p = 1, 2, …, r, there are r second-order diagonal kernels.  The 
subsidiary pulse responses y1, y2, and y12 are computed using the following pulse loading 
patterns:    
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0δy1 ~ unit pulse applied to input up at t = 0 (k = 0); inputs uj = 0,  j ≠ p;  p, j = 1, 2, …, r 

2 ~ unit pulse
 

0δy applied to input up at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T ; inputs uj = 0,  j ≠ p;  
 

12 ~ two unit pulses 2

p, j = 1, 2, …, r
 

0δy applied to input up: one at t = 0 and the other at t = 0, ∆T, 2 ∆T, …, 
j =

gain, as in the case of two inputs treated in Appendix B, y2 can be obtained from y1 by time 

Collecting the three sets of subsidiary pulse response time histories corresponding to each 

                               r                          (C6) 

ff-diagonal kernels ( ): 

For the off-diagonal kernels, p ≠ q and the subsidiary pulse responses y1, y2, and y12 are 
mp

1 ~ unit pulse

(ncomp -1) ∆T; inputs u  0,  j ≠ p;  p, j = 1, 2, …, r      
 
A
shifting y1 appropriately. 
 
 
input, the diagonal second-order kernels are computed (component-by-component) using the 
expression 
 
   ( , ) ( , ) ( , ) ( , )

2 12 1 20.5 (y  y  y ) ;      =1, 2, ...,p p p p p p p pk p= − −
 
O ( , )

2
p qk

 
 
co uted using the following pulse loading patterns, where (p, q) = 1, 2, …., r  with  p ≠ q: 
 

0δy applied to input uq at t = 0 (k = 0); input up = 0; inputs uj = 0, j ≠ p, q;  j = 1, 2, 

2 ~ unit pulse

…, r  
 

0δy applied to input up at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T; input uq = 0; inputs uj 
 =

12 ~ unit pulses

= 0,  j ≠ p, q;  j  1, 2, …, r 
 

0δy applied to input up at t = 0, ∆T, 2 ∆T, …, (ncomp -1) ∆T and input uq at t = 0;  
 p

ollecting the three sets of subsidiary pulse time histories corresponding to each input, the off-

                   r p q≠                      (C7) 

here are r2 – r second-order off-diagonal kernels. 

As was found for the case of two inputs in Appendix B, the pulse loading patterns 

inputs uj = 0,  j ≠ , q;  j = 1, 2, …, r      
 
C
diagonal second-order kernels are computed (component-by-component) using the expression 
 
   ( , ) ( , ) ( , ) ( , )

2 12 1 20.5 (y  y  y ) ;      , =1, 2, ..., ;p q p q p q p qk p q= − −
 
T
 
 
described above for computing the subsidiary responses needed for calculating the off-diagonal 
kernels are different.  However, not all the subsidiary responses mentioned above actually need 
to be computed because the collection of all pulse loadings (and hence subsidiary responses) is 
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not unique so that several sets of identities exist among them.  Thus, as before, a considerable 
reduction in computational effort can be achieved if advantage is taken of such relationships.   
 
A Comment on Indexing for the Off-Diagonal Kernels: 
 
The rule for determining which off-diagonal kernel is being calculated that was established for 
the case of two inputs in Appendix B also holds for this case.  Building on the results for the case 
of two inputs in Appendix B, the rule for determining which off-diagonal kernel is being 
calculated while cycling the indices p and q through off-diagonal values depends on which pulse 
inputs are nonzero when computing the subsidiary responses y1 and y2.  Specifically, whichever 
input is nonzero when computing y1 sets the second index q and whichever input is nonzero 
when computing y2 sets the first index p.  
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Figure 1.- Notional block diagram of CFD-based reduced-order modeling approach  
for nonlinear aeroservoelastic analysis.  
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Figure 2.- Continuous first-order kernels of ref. 13 (N = 300, dt = 0.01 sec). 
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Figure 3.- Continuous second-order kernels of ref. 13 at 10 values of time lag T  
(N = 300, dt = 0.01 sec, dT = 0.1 sec, and ncomp = 10). 
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Figure 4.- Discretized first-order kernels of ref. 13 (N = 300, ∆t = 0.01 sec). 
 
 
 
 
 

 63 
 



 

 
 

Figure 5.- Discretized second-order kernels of ref. 13 at 10 values of time lag T  
(N = 300, ∆t = 0.01 sec, ∆T = 0.1 sec, and ncomp = 10). 
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Figure 6.- Discrete first-order kernels calculated using method of present report  
(N = 300, ∆t = 0.01 sec). 
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Figure 7.- Discrete second-order kernels calculated using method of present report at 10 values 
of time lag T (N = 300, ∆t = 0.01 sec, ∆T = 0.1 sec, and ncomp = 10). 
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Figure 8.- Components of discrete second-order kernels shifted to time index zero for 
comparison to the discretized kernels of reference 13 as shown in figure 5 of present report. 
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Figure 9.- Discrete first-order kernel calculated using method of present report  
for bilinear system of Example 1 (N = 600, ∆t = 0.01 sec). 
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Figure 10.- Discrete second-order kernel calculated using method of present report at 30 values 
of time lag T for bilinear system of Example 1 (N = 600, ∆t = 0.01 sec, ∆T = 0.1 sec,  

and ncomp = 30). 
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Figure 11.- Components of discrete second-order kernel shifted to time index zero for bilinear 
system of Example 1 (N = 600, ∆t = 0.01, ∆T = 0.1, and ncomp = 30). 
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Figure 12.- Response time histories of linear, original bilinear, and identified bilinear equations 
to unit step input for bilinear system of Example 1. 
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Figure 13.- Double sawtooth input applied to bilinear system of Example 1.  
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Figure 14.- Response time histories of linear, original bilinear, and identified bilinear equations 
 to double sawtooth input of figure 13 for bilinear system of Example 1. 
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Figure 15.- Discrete first-order kernel calculated for nonlinear Riccati equation of Example 2  
(N = 5000, ∆t = 0.01 sec). 

 
 
 
 
 
 

 74 
 



 

 
 

Figure 16.- Discrete second-order kernel calculated at 20 values of time lag T for nonlinear 
Riccati equation of Example 2 (N = 5000, ∆t = 0.01 sec, ∆T = 0.1 sec, and ncomp = 20). 

 
 
 
 

 75 
 



 

 
 

Figure 17.- Computed response time histories for unit step excitation of linearized Riccati 
equation, nonlinear Riccati equation, and identified bilinear equation of Example 2. 
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Figure 18.- Composite input applied to Riccati equation of Example 2. 
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Figure 19.- Response time histories of linearized Riccati equation, nonlinear Riccati equation, 
and identified bilinear equation for Example 2 to composite input of figure 18. 
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Figure 20.- Discrete first-order kernel calculated for nonlinear Burgers equation of Example 3  
(N = 400, ∆t = 0.01 sec). 
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Figure 21.- Components of discrete second-order kernel calculated at 10 values of time lag T for 
nonlinear Burgers equation of Example 3 (N = 400, ∆x = 0.2, ∆t = 0.01 sec, ∆T = 0.01 sec, and 

 ncomp = 10). 
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Figure 22.- Noisy unit step input applied to nonlinear Burgers equation of Example 3.   
 
 
 
 

 81 
 



 

 
 

Figure 23.- Linear, nonlinear, and identified bilinear responses of Burgers equation 
 to noisy unit step input of figure 22.  
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Figure 24.- Noisy five-hertz sine wave applied to nonlinear Burgers equation of  Example 3. 
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Figure 25.- Linear, nonlinear, and identified bilinear equation responses  
to noisy sine wave of figure 24. 
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Figure 26.- Nonlinear and first- plus second-order convolution responses  
of Burgers equation to noisy sine wave of figure 24. 
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Figure 27.- Random input applied to Burgers equation of Example 3.  
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Figure 28.- Linear, nonlinear, and identified bilinear responses of Burgers equation  
to random input of figure 27. 
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Figure 29.- Nonlinear and first- plus second-order convolution responses  
of Burgers equation to random input of figure 27. 
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Figure 30.- Noisy/sinusoidal ramp excitations applied to Burgers equation of Example 3. 
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Figure 31.- Linear, nonlinear, identified bilinear, and convolution responses of Burgers equation  
to noisy/sinusoidal ramp input of figure 30. 

 
 
 
 

 90 
 



 

 
 

Figure 32.- Discrete first-order kernel for Continuous Stirred Tank Reactor (CSTR) problem  
of Example 4 (N = 250, ∆t = 0.001 hr; first 70 time points plotted).  
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Figure 33.- Components of discrete second-order kernel calculated at 50 values of time lag T for 
CSTR problem of Example 4 (N = 250, ∆t = 0.001 hr, ∆T = 0.001 hr, and ncomp = 50;  

first 70 time points plotted). 
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Figure 34.- Responses of linear, nonlinear, original bilinear, identified bilinear, and convolution 
models for CSTR of Example 4 to piecewise step excitations. 
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Figure 35.- First-order kernel for nonlinear difference equation of Example 5 
 (N = 250, ∆t = 1 sec; first 50 time points plotted). 
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Figure 36.- Components of discrete second-order kernel computed at 10 values of time lag T for 
nonlinear difference equation of Example 5 (N = 250, ∆t = 1 sec, ∆T = 1 sec, and ncomp = 10; 

first 50 time points plotted). 
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Figure 37.- Time history of step/pulse inputs applied to equation of Example 5. 
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Figure 38.- Responses of linear, nonlinear, and identified bilinear equations  
for Example 5 to step/pulse inputs of figure 37. 
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Figure 39.- Composite excitation applied to nonlinear difference model of Example 5. 
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Figure 40.- Responses of linear, nonlinear, identified bilinear, and convolution models 
 of nonlinear difference equation of Example 5 to composite input of figure 39. 
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Figure 41.- Discrete first-order kernels of modified bilinear equation 
 used for MISO examples (N = 300, ∆t = 0.01 sec).   
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Figure 42.- Discrete second-order kernels of modified bilinear equation used for MISO examples 
at 30 values of time lag T  (N = 300, ∆t = 0.01 sec, ∆T = 0.1 sec, and ncomp = 30).   
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Figure 43.- Step inputs applied to MISO bilinear system example. 
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Figure 44.- Linear, original bilinear, and identified bilinear responses  
of MISO bilinear system example to step inputs of figure 43. 
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Figure 45.-  First pattern of sinusoidal inputs applied to MISO bilinear equation  
(Input u2 delayed 50 time points). 
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Figure 46.- Responses of linear, original bilinear, and identified bilinear equations 
 to sinusoidal inputs of figure 45. 
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Figure 47.- Second pattern of sinusoidal inputs applied to MISO bilinear example equation 
(Inputs same as in figure 45 but with interchanged frequencies). 
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Figure 48.- Responses of linear, original bilinear, and identified bilinear equations 
 to sinusoidal inputs of figure 47. 
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Figure 49.- Random inputs applied to both u1 and u2.  Input u2 delayed 45 time points. 
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Figure 50.- Responses of linear, original bilinear, and identified bilinear equations 
 to random inputs of figure 49. 
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Figure 51.- Ramp inputs applied to u1 and u2.  Input u2 delayed 50 time points. 
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Figure 52.-  Responses of linear, original bilinear, and identified bilinear equations 
 to ramp inputs of figure 51. 
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Figure 53.- Multi-pulse u1 and u2 loading patterns applied to MISO bilinear system. 
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Figure 54.- Responses of linear, original bilinear, and identified bilinear equations  
to multi-pulse inputs of figure 53. 
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Figure 55.- Five-hertz sinusoid on u1; single sharp pulse on u2. 
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Figure 56.- Response time histories of linear, original bilinear, and identified bilinear equations 
to inputs of figure 55. 
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Figure 57.- Two-hertz sinusoid on u1; sequence of three narrow pulses on u2. 
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Figure 58.- Response time histories using linear, original bilinear, and identified bilinear 
equations to sine and pulse-train inputs of figure 57. 
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Figure 59.- Noisy u1 and u2 step inputs with a constant 0.002 per step drift in u2. 
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Figure 60.- Responses of linear, original bilinear, and identified bilinear equations 
to noisy step inputs of figure 59. 
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Figure 61.- Same noisy step inputs as in figure 59 but with no drift in u2 signal. 
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Figure 62.- Responses of linear, original bilinear, and identified bilinear equations 
to noisy step inputs of figure 61. 
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Figure 63.- Sawtooth/ramp patterns of u1 and u2 input time histories. 
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Figure 64.- Responses of linear, original bilinear, and identified bilinear equations  
to sawtooth/ramp inputs of figure 63. 
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Figure 65.- Two-hertz sinusoid on u1; series of up and down ramps on u2. 
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Figure 66.- Responses of linear, original bilinear, and identified bilinear equations  
to u1 and u2 inputs of figure 65.  
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3.         Convert the discrete state-space matrices ABCD to their     
 continuous counterparts using the MATLAB function d2c.m  

4.  Convert the discrete symmetric second-order kernels from step 1 
        to their continuous triangular counterparts using equation 24b  

5.      Compute the subsidiary matrices G and H using equation 9 

6.         Compute the subsidiary matrices Kj using equation 11 

7.       Compute the continuous bilinear state-space matrices Nj         

      using equation 12  

8.         Discretize the resulting identified continuous bilinear    
     state-space equations as required using appropriate  
                        finite-difference modeling techniques 

2.          Use the first-order kernels in a linear system realization             
 procedure to identify the discrete state-space matrices ABCD.   
         (The Eigensystem Realization Algorithm (ERA) described in  
                  ref. 30 is used in the present work.)

1.    Compute the first- and second-order discrete Volterra kernels   
 following the procedures described in Appendices B and C  

 
 
 

Figure 67.- Block diagram indicating the sequence of tasks for identifying a discrete bilinear 
state-space representation of a nonlinear system using discrete Volterra kernels. 
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